基于聚偏氟乙烯/聚多巴胺/UiO-66纳米纤维的复合质子交换膜制备及其性能  

Preparation and properties of composite proton-exchange membrane based on polyvinylidene fluoride/polydopamine/UiO-66 nanofibers

在线阅读下载全文

作  者:张鑫伟 李港华 李林蔚 刘红 田明伟[1,2] 王航 ZHANG Xinwei;LI Ganghua;LI Linwei;LIU Hong;TIAN Mingwei;WANG Hang(College of Textiles and Clothing,Qingdao University,Qingdao,Shandong 266071,China;Qingdao Health and Protection intelligent Textile Engineering Research Center,Qingdao,Shandong 266071,China)

机构地区:[1]青岛大学纺织服装学院,山东青岛266071 [2]青岛市健康与防护智能纺织工程研究中心,山东青岛266071

出  处:《纺织学报》2025年第2期35-42,共8页Journal of Textile Research

基  金:国家自然科学基金项目(22208178);山东省青创科技创新团队项目(2023KJ223);泰山学者工程专项经费资助项目(tsqn202211116);山东省科技型中小企业创新能力提升工程项目(2023TSGC0344,2023TSGC1006);宿迁市重点研发计划项目(H202310)。

摘  要:针对质子交换膜内高效质子传输通道构筑难题,提出了多尺度微相界面结构与多功能酸-碱离子域协同构筑策略,采用聚多巴胺(PDA)修饰和锆1,4-氨基苯金属有机骨架(UiO-66)原位生长方法制备聚偏氟乙烯(PVDF)/PDA/UiO-66纳米纤维,后经磺化聚砜溶液(SPSF)浸渍制得致密的复合质子交换膜,并对PVDF/PDA/UiO-66纳米纤维对质子交换膜微观结构、吸水性能、尺寸稳定性能、质子传导性能、甲醇渗透系数等的影响规律进行了研究。结果表明:多尺度微观纳米纤维结构显著增加了微相界面作用区域并通过酸-碱离子作用有效调控膜内质子传输位点,提升了复合质子交换膜综合性能;所制备的质子交换膜吸水率增加到55.56%,溶胀性被限制在18.32%;复合膜的质子电导率达到了0.165 S/cm,相对于SPSF膜提升了100.97%;甲醇渗透系数显著降低,甲醇渗透率低至2.139×10^(-7) cm^(2)/s,选择性相比SPSF膜提高了11倍。基于原位生长金属有机骨架纳米纤维的多尺度微相界面结构与多功能酸-碱离子域协同构筑策略,可从结构与功能角度有效协同提升质子交换膜综合性能,助推下一代新型纳米纤维复合质子交换膜发展。Objective Proton-exchange membrane(PEM)as a key component of fuel cells represent an important area of research that drives the rapid development of new energy technologies.The exchange of protons depends on the proton carriers and pathways within the membrane,making the optimization of these two structures crucial for achieving efficient proton transport.Current research primarily focuses on simple functional structures of metal-organic frameworks(MOF)and nanofibers,with slow improvements in proton conductivity.To tackle the challenges associated with proton transport in PEMs,a strategy has been put forth that involves the creation of a multi-scale micro-phase interface structure and multifunctional acid-base ion domains.The multi-scale architecture of the MOF composite nanofibers(physical microenvironment)and the functional ion domains situated between the MOF,fiber matrix,and polymer matrix(chemical microenvironment)markedly influence the performance of the proton exchange membrane.The study also investigates the synergistic effects of these physicochemical structures on proton transport.Method Polyvinylidene fluoride(PVDF)nanofibers were prepared using electrospinning technology.Following this,the nanofibers were subjected to a polydopamine(PDA)chemical treatment within a buffer solution,succeeded by the in situ growth of a metal-organic framework(MOF)under conditions of high temperature and pressure.This process yielded nanofibers featuring a multi-scale micro-phase interface structure and multifunctional acid-base ion domains.Finally,a dense composite proton exchange membrane was fabricated using a sulfonated polyphenylsulfone(SPSF)solution through a compatible immersion method.Results The results of EDS mapping showed that PDA was chemically bonded onto the nanofibers.Scanning electron microscopy images clearly revealed the presence of MOF particles,indicating good results from the in-situ growth treatment.Performance tests of the composite membrane demonstrated that the multi-scale micro-nanofiber structu

关 键 词:纳米纤维 质子交换膜 质子传导通道 直接甲醇燃料电池 金属有机骨架化合物 

分 类 号:TS1[轻工技术与工程—纺织科学与工程] TK91[动力工程及工程热物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象