基于人工智能的无纸化考试作弊行为检测研究  

Research on the Detection of Cheating Behavior in Paperless Exams Based on Artificial Intelligence

在线阅读下载全文

作  者:薛志禹 XUE Zhiyu(Inner Mongolia Lucheng Vocational Training School Inner Mongolia Jucai Yinzhi Technology Co.,Ltd.Inner Mongolia Baotou 014000)

机构地区:[1]内蒙古鹿城职业培训学校内蒙古聚才引智技术有限公司,内蒙古包头014000

出  处:《长江信息通信》2025年第1期159-161,共3页Changjiang Information & Communications

摘  要:随着人工智能技术的不断发展,无纸化考试逐渐成为一种趋势,然而,也引发了考试作弊行为的增加。因此,文章提出了基于人工智能的无纸化考试作弊行为检测系统,以提高考试的公平性和可靠性。首先,对无纸化考试环境中的作弊行为进行了深入分析,并总结了目前常见的作弊方式和特征。其次,设计了基于物联网的无纸化考场管控平台。然后,采用了深度学习算法,通过对大量考试数据进行训练,构建了一个作弊动作检测模型。该模型能够自动地对考生的作答过程进行监测和分析,准确地识别出潜在的作弊行为。最后,为了验证模型的准确性和有效性,该研究设计了一系列实验。实验结果表明,该作弊行为检测系统在无纸化考试场景中具有较高的准确率。With the continuous development of artificial intelligence technology,paperless exams have gradually become a trend,but it has also led to an increase in cheating behavior in exams.Therefore,this article proposes a paperless exam cheating behavior detection system based on artificial intelligence to improve the fairness and reliability of exams.Firstly,an in-depth analysis was conducted on cheating behavior in paperless examination environments,and the common cheating methods and characteristics were summarized.Secondly,a paperless examination room control platform based on the Internet of Things was designed.Then,using deep learning algorithms,a cheating action detection model was constructed by training on a large amount of exam data.This model can automatically monitor and analyze the answering process of candidates,accurately identifying potential cheating behaviors.Finally,in order to verify the accuracy and effectiveness of the model,a series of experiments were designed in this study.The experimental results show that the cheating behavior detection system has a high accuracy in paperless examination scenarios.

关 键 词:人工智能 无纸化考试 作弊行为检测 无纸化考场管控平台 Video Swin Transformer模型 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象