基于改进的正交匹配跟踪算法的波达方向估计  

Direction of arrival estimation based on improved orthogonal matching pursuit algorithm

在线阅读下载全文

作  者:窦慧晶 谢东旭 郭威 邢路阳 DOU Hui-jing;XIE Dong-xu;GUO Wei;XING Lu-yang(Department of Information Science,Beijing University of Technology,Beijing 100124,China)

机构地区:[1]北京工业大学信息学部,北京100124

出  处:《吉林大学学报(工学版)》2024年第12期3568-3576,共9页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(61171137);北京市教育委员会科研发展计划项目(KM201210005001)。

摘  要:针对正交匹配跟踪算法在估计精度要求高时计算量较大且无法剔除错误原子的问题,提出了一种基于改进灰狼算法优化的正交匹配跟踪算法。该算法首先在灰狼算法的基础上进行改进,提出了一种基于Sigmoid函数演化而来的非线性收敛因子,并在灰狼算法的位置更新策略中引入动态权重。然后,将改进的灰狼算法应用到压缩感知的波达方向估计领域,利用改进的灰狼算法优化正交匹配跟踪算法的原子匹配过程,以减少正交匹配跟踪算法的计算量和运行时间,同时在正交匹配跟踪算法中引入回溯思想提高算法正确率。最后,通过仿真实验证明本文算法相较原算法具有估计精度高、运行速度快、抗噪能力强等优点。To address the problem of high computational complexity and inability to remove incorrect atoms in the orthogonal matching pursuit(OMP)algorithm when high estimation accuracy is required,an improved OMP algorithm based on the improved grey wolf optimization algorithm is proposed.Firstly,a nonlinear convergence factor based on the sigmoid function is proposed to improve the grey wolf algorithm,and a dynamic weighting method is introduced into the position update strategy of the grey wolf algorithm.Then,the improved grey wolf algorithm is applied to the field of compressed sensing DOA estimation,and the atom matching process of the OMP algorithm is optimized by using the improved grey wolf algorithm,which reduces the computational complexity and running time of the OMP algorithm,and introduces a backtracking thought to improve the correctness of the algorithm.Finally,simulation experiments demonstrate that the proposed algorithm has higher estimation accuracy,faster operation speed,and stronger anti-noise ability compared to the original algorithm.

关 键 词:信号与信息处理 波达方向估计 压缩感知 稀疏重构 正交匹配跟踪 灰狼算法 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象