检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘小杰 李天顺 李欣 段一凡 李红玮 吕庆 LIU Xiaojie;LI Tianshun;LI Xin;DUAN Yifan;LI Hongwei;LüQing(School of Metallurgy and Energy,North China University of Science and Technology,Tangshan 063210,Hebei,China)
机构地区:[1]华北理工大学冶金与能源学院,河北唐山063210
出 处:《中国冶金》2025年第1期1-14,31,共15页China Metallurgy
基 金:现代冶金技术教育部重点实验室开放基金资助项目(2024YJKF01);河北省科技研发平台建设专项资助项目(23560301D)。
摘 要:钢铁行业是国家经济发展的重要建设基础和工业化支撑,直接影响国民生活水平和国家安全。为积极响应中国的“碳达峰、碳中和”与可持续发展政策,中国钢铁行业未来的转型方向将聚焦于高质量发展、绿色生产、智能制造和提升国际竞争力,以实现碳减排和可持续发展的目标。作为钢铁生产的重要一环,高炉炼铁领域已基本具备完整的自动化系统,产生了大量的生产数据。为了将这些数据服务于高炉炼铁智能化,推动高炉炼铁可持续发展,围绕高炉智能化方向。通过数据治理技术对数据进行清洗,可以提高数据质量,为后续分析提供可靠基础。基于生产过程中的重要参数,利用大数据分析及人工智能技术,建立关键变量的数字孪生模型。可以在冶炼过程中针对多个目标进行实时监测、分析和预测,结合智能化的控制策略和优化算法,实现多目标的协同优化,从而可以在确保生产安全的前提下提高生产效率、降低成本。利用数据中台对高炉炼铁产生的数据进行整合、分析、应用、共享等,可以提升高炉炼铁的智能化水平和生产效率。最后,总结了高炉炼铁智能化方向存在的问题,并在结论中探讨了解决方案,希望能够为高炉炼铁行业的智能化转型升级提供指导,推动钢铁行业的可持续发展。The steel industry is an important construction foundation and industrialization support for the development of the national economy,while also directly affecting the living standards and national security of the people.To actively respond to China′s"carbon peak,carbon neutrality"and sustainable development policies,the future transformation direction of the Chinese steel industry will focus on high-quality development,green production,intelligent manufacturing,and enhancing international competitiveness,in order to achieve the goals of carbon reduction and sustainable development.Blast furnace ironmaking is an important part of steel production,with a complete automation system that generates a large amount of production data.In order to serve the intelligence of blast furnace ironmaking and promote the sustainable development of blast furnace ironmaking with these data.Data cleaning through data management technology can enhance data quality and provide a reliable basis for subsequent analysis.Based on the important parameters in the production process,the digital twin model of key variables is established by using big data analysis and artificial intelligence technology.Real-time monitoring,analysis and prediction can be carried out for multiple targets in the smelting process,combined with intelligent control strategies and optimization algorithms to achieve multi-objective collaborative optimization,which can improve production efficiency and reduce costs under the premise of ensuring production safety.The intelligence level and production efficiency of blast furnace ironmaking can be further improved by using data middle platform to integrate,analyze,apply and share the large amount of data generated by blast furnace ironmaking.Finally,the issues in the intelligentization of blast furnace ironmaking were summarized,and solutions were discussed in the conclusion.These insights provide guidance for the industry′s transformation towards intelligence and contribute to the sustainable development of the stee
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38