检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李阳 孙建军[1,2] Li Yang;Sun Jianjun(School of Information Management,Nanjing University,Nanjing 210023;Laboratory of Data Intelligence and Interdisciplinary Innovation,Nanjing University,Nanjing 210023)
机构地区:[1]南京大学信息管理学院,南京210023 [2]南京大学数据智能与交叉创新实验室,南京210023
出 处:《情报学报》2025年第2期246-256,共11页Journal of the China Society for Scientific and Technical Information
基 金:国家社会科学基金一般项目“数智赋能的重大突发公共事件预测型情报服务机制研究”(22BTQ051)。
摘 要:以ChatGPT为代表的大模型应用正对人类社会产生深远影响,世界万物陆续被“压缩”和“映射”到大模型之中。在大模型时代,信息世界呈现新形态,其典型特征表现在3个方面:人工智能生成内容的大量产生,机器地位的不断上升,大模型成为新质生产力引擎。作为对新技术一贯保持高度敏感性、与信息世界同向同行的情报学学科,大模型催生出的信息世界新形态对情报学的研究问题、目标任务、理论体系、研究范式、学科可见度等产生多重影响。由此进一步催生出工具视角(大模型驱动的情报学研究)和对象视角(大模型作为研究对象的情报学研究)两种不同的研究路径,前者涉及大模型赋能的智能情报分析与处理、面向多元场景的情报大模型搭建与应用等核心议题,后者涉及安全与发展融合视角下人工智能生成内容的善治、大模型时代的信息用户与行为等核心议题。未来,需要从学术氛围、数据基础设施建设、教育与人才培养等多方面积极着力,以进一步支持大模型发展及情报学学科话语体系的建构。The application of large language models represented by ChatGPT has a continuous profound impact on human society;different knowledge domains are“compressed”and“mapped”into successive large language models.The rise of large language models has given the information world a new form.The typical characteristics of the information world are manifested in three aspects:the massive production of artificial intelligence generated content;the rising status of machines;and the emergence of large language models as the new quality productivity engines.Information science has always exhibited a high degree of sensitivity to new technologies in line with the information world.The new form of the information world exerts a profound impact on the research issues,target tasks,theoretical systems,research paradigms,and visibility of the discipline.As a result,two different paths have emerged,namely,tool perspective and object perspective.The former involves intelligent information analysis and processing empowered by large language models and the construction and application of information large language models for diversified scenarios,whereas the latter covers topics such as good governance of artificial intelligence generated content in the context of the convergence of security and development and information users and behaviors in the era of large language models.Therefore,it is necessary to explore the academic environment,data infrastructure construction,and education and talent training to further support the development of large language models and the construction of disciplinary discourse systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44