基于KPCA-IPOA-LSSVM的变压器电热故障诊断  

Electrical and Thermal Fault Diagnosis of Transformer Based on KPCAIPOA-LSSVM

作  者:陈尧 周连杰[2] CHEN Yao;ZHOU Lianjie(School of Electrical and Control Engineering,Liaoning Technical University,Huludao,LiaoNing 125105 China;Kailuan(Group)Co.,Ltd.,Tangshan,Hebei 063000 China)

机构地区:[1]辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125105 [2]开滦(集团)有限责任公司,河北唐山063000

出  处:《南方电网技术》2025年第1期20-29,共10页Southern Power System Technology

基  金:国家自然科学基金资助项目(51974151)。

摘  要:为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的变压器故障诊断方法。首先用KPCA对多维变压器故障数据进行特征提取,降低计算复杂度。其次引入Logistic混沌映射、自适应权重策略和透镜成像反向学习策略对鹈鹕优化算法(pelican optimization algorithm,POA)进行改进。最后建立了KPCA-IPOA-LSSVM故障诊断模型,诊断精度为94.24%,与PCA-IPOA-SVM、KPCA-IPOA-SVM、KPCA-WOA-LSSVM和KPCA-POA-LSSVM故障诊断模型进行对比,准确率分别提升了18.31%、11.53%、11.87%、7.46%。结果表明,所提出的变压器故障诊断模型有效提高了故障诊断的准确率,证明了该诊断模型具有一定的理论研究和实际工程应用意义。In order to solve the problem of low accuracy of fault diagnosis of oil-immersed transformers,a transformer fault diagnosis method of kernel principal component analysis(KPCA)with improved pelican optimization algorithm(IPOA)optimized least squares support vector machine(LSSVM)is proposed.Firstly,KPCA is used to extract features from multidimensional transformer fault data,reducing computational complexity.Secondly,logistic chaotic mapping,adaptive weight strategy,and lens imaging reverse learning strategy are introduced to improve the pelican optimization algorithm(POA).Finally,the KPCA-IPOA-LSSVM fault diagnostic model is established,and the diagnostic accuracy is 94.24%.Compared with the PCA-IPOA-SVM,KPCA-IPOA-SVM,KPCA-WOA-LSSVM,and KPCA-POA-LSSVM fault diagnostic models,the accuracy is improved respectively by 18.31%,11.53%,11.87%,7.46%.The results show that the transformer fault diagnosis model proposed in this paper effectively improves the accuracy of fault diagnosis,proving that the diagnostic model has certain significance in theoretical research and practical engineering application.

关 键 词:变压器 鹈鹕优化算法 最小二乘支持向量机 核主成分分析 故障诊断 

分 类 号:TM40[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象