检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁芷 毋涛[1] 薛岩松 LIANG Zhi;WU Tao;XUE Yansong(School of Computer Science,Xi'an Polytechnic University,Xi'an 710600)
机构地区:[1]西安工程大学计算机科学学院,西安710600
出 处:《计算机与数字工程》2024年第12期3503-3508,3554,共7页Computer & Digital Engineering
基 金:陕西省科技成果转移与推广计划(编号:2019CGXNG-018)资助。
摘 要:针对YOLOv3在人体检测上对小目标对象检测精度低、漏检率高,以及其检测速度无法满足现阶段实时检测需求的问题,论文提出基于改进YOLOv3的人体目标检测算法。首先,对VOC数据集中person类别使用K-means++聚类算法重新聚类,生成新的先验框,优化先验参数;其次,对YOLOv3骨干网络Darknet53进行通道剪枝,得到轻量化的骨干网络LR-Darknet41,减少模型参数,提高检测速度;最后,在特征融合部分,将部分深浅层特征通过RFB-s模块进行融合,扩大感受野,增强对小目标对象的检测。实验结果表明,所提出的改进算法相较原算法,漏检率降低3.7%,检测精度提高4.1%,检测速度达到53.6帧/秒。There are more problems that YOLOv3 have low detection accuracy,high missed detection rate for small target ob-jects in human detection,and YOLOv3's detection speed cannot meet the needs of real-time detection scene.To deal with these prob-lems,this paper proposes a human object detection algorithm based on improved YOLOv3.Firstly,the K-means++algorithm is uti-lized to cluster the target boundaries in the VOC data set of the person,and the priori parameters of the network are optimized by the clustering results.Secondly,the algorithm acquires a lightweight LR-Darknet41 by pruning the backbone network structure of Dark-net53,which can decrease the parameters of the model and improve the detection speed.Finally,the fusion of the shallow and deep features is achieved by using RFB-s,which can expand the receptive field and augment the detection of small-scale human target.The data show that,compared with the original algorithm,the improved algorithm reduces the missed detection rate by 3.7%and in-creases the detection accuracy by 4.1%,and the detection speed reaches 53.6 frames/s.
关 键 词:YOLOv3 人体检测 LR-Darknet41网络 特征融合 RFB-s
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7