检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡克富 王卫东 HU Kefu;WANG Weidong(School of Computing,Jiangsu University of Science and Technology,Zhenjiang 212100)
出 处:《计算机与数字工程》2025年第1期158-163,共6页Computer & Digital Engineering
摘 要:点击率(CTR)预测用于预测用户点击推荐物品的概率,是推荐系统和在线广告的关键任务。CTR预测模型中缺乏对高效的特征交互以及对特征交互的可解释性。论文提出了一种具有编码器的EnDeepFM推荐模型(Deep Neural Networks with Encoder Enhanced Factorization Machine,EnDeepFM),通过Transformer编码器对嵌入特征进行编码,利用双线性函数生成不同特征对的不同特征相似度,从编码器生成的嵌入有利于进一步的特征交互。最后,在真实数据集Criteo和MovieLens上进行对比实验,实验结果表明所提出的算法比DeepFM模型具有更好的预测性能。Click-through rate(CTR)prediction is used to predict the probability of users clicking on recommended items,which is a key task for recommender systems and online advertising.Efficient feature interactions and interpretability of feature inter⁃actions are lacking in CTR prediction models.This paper proposes an EnDeepFM recommendation model with an encoder(Deep Neural Networks with Encoder Enhanced Factorization Machine,EnDeepFM),which encodes the embedded features through the Transformer encoder,and uses the bilinear function to generate different feature similarities of different feature pairs.Embeddings generated from the encoder facilitate further feature interactions.Finally,comparative experiments are conducted on the real datas⁃ets Criteo and MovieLens,and the experimental results show that the proposed algorithm has better predictive performance than the DeepFM model.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38