检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴若岚 陈玉玲[1] 豆慧 张洋文 龙钟 WU Ruolan;CHEN Yuling;DOU Hui;ZHANG Yangwen;LONG Zhong(College of Computer Science and Technology,State Key Laboratory of Public Big Data Co-built by Provincial and Ministry,Guizhou University,Guiyang 550025,Guizhou,China)
机构地区:[1]贵州大学省部共建公共大数据国家重点实验室计算机科学与技术学院,贵州贵阳550025
出 处:《计算机工程》2025年第2期179-187,共9页Computer Engineering
基 金:国家自然科学基金(62202118);贵州省教育厅"揭榜挂帅"科技攻关项目(黔教技[2023]003号);贵州省教育厅自然科学研究科技拔尖人才项目(黔教技[2022]073号);贵州省科技厅百层次创新人才项目(黔科合平台人才-GCC[2023]018)。
摘 要:联邦学习作为新兴的分布式学习框架,允许多个客户端在不共享原始数据的情况下共同进行全局模型的训练,从而有效保护了数据隐私。然而,传统联邦学习仍然存在潜在的安全隐患,容易受到中毒攻击和推理攻击的威胁。因此,为了提高联邦学习的安全性和模型性能,需要准确地识别恶意客户端的行为,同时采用梯度加噪的方法来避免攻击者通过监控梯度信息来获取客户端的数据。结合恶意客户端检测机制和本地差分隐私技术提出了一种鲁棒的联邦学习框架。该算法首先利用梯度相似性来判断和识别潜在的恶意客户端,减小对模型训练任务产生的不良影响;其次,根据不同查询的敏感性以及用户的个体隐私需求,设计一种基于动态隐私预算的本地差分隐私算法,旨在平衡隐私保护和数据质量之间的权衡。在MNIST、CIFAR-10和MR文本分类数据集上的实验结果表明,与3种基准算法相比,该算法在准确性方面针对sP类客户端平均提高了3百分点,实现了联邦学习中更高的安全性水平,显著提升了模型性能。Federated learning is an emerging distributed learning framework that facilitates the collective engagement of multiple clients in global model training without sharing raw data,thereby effectively safeguarding data privacy.However,traditional federated learning still harbors latent security vulnerabilities that are susceptible to poisoning and inference attacks.Therefore,enhancing the security and model performance of federated learning has become imperative for precisely identifying malicious client behavior by employing gradient noise as a countermeasure to prevent attackers from gaining access to client data through gradient monitoring.This study proposes a robust federated learning framework that combines mechanisms for malicious client detection with Local Differential Privacy(LDP)techniques.The algorithm initially employs gradient similarity to identify and classify potentially malicious clients,thereby minimizing their adverse impact on model training tasks.Subsequently,a dynamic privacy budget based on LDP is designed,to accommodate the sensitivity of different queries and individual privacy requirements,with the objective of achieving a balance between privacy preservation and data quality.Experimental results on the MNIST,CIFAR-10,and Movie Reviews(MR)text classification datasets demonstrate that compared to the three baseline algorithms,this algorithm results in an average 3 percentage points increase in accuracy for sP-type clients,thereby achieving a higher security level with significantly enhanced model performance within the federated learning framework.
关 键 词:联邦学习 中毒攻击 推理攻击 本地差分隐私 隐私保护
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.53.191