Lamb波全聚焦成像的薄板结构损伤识别方法  

Lamb wave total focusing imaging method for damage identification in thin plate structures

作  者:王高平[1] 李致远 关可庆 苑东旭 WANG Gaoping;LI Zhiyuan;GUAN Keqing;YUAN Dongxu(School of Mechanical and Electrical Engineering,Wuhan Institute of Technology,Wuhan 430205,China)

机构地区:[1]武汉工程大学机电工程学院,湖北武汉430205

出  处:《武汉工程大学学报》2025年第1期80-84,92,共6页Journal of Wuhan Institute of Technology

基  金:湖北省自然科学基金(2013CFB321);武汉工程大学第十五届研究生教育创新基金(CX2023260)。

摘  要:针对大型各向同性板状结构在使用过程中易出现疲劳、裂纹,从而导致工程结构被破坏的问题,提出了一种针对板状结构损伤识别的Lamb波全聚焦成像方法,将相位相干算法应用于结构的缺陷检测以增强成像的信噪比和分辨率。首先根据COMSOL仿真分析得出实验的可行性,通过对回波信号进行延时处理,扩大损伤点信号幅值的贡献,在MATLAB软件中对单个和多个圆形通孔损伤进行识别成像。结果表明,Lamb波全聚焦成像方法能够对损伤进行识别,且在相位相干成像算法的加权下,有效抑制结构噪声的影响,提高了信噪比并且对多个相邻损伤的分辨能力得到了加强,最大误差率不超过4.1%,达到提高板状结构损伤检测能力的目的。To address the issue of fatigue and cracks that commonly occur in large isotropic plate structures during operation,which can lead to structural damage,we proposed a Lamb wave total focusing imaging method for damage identification in plate structures.This method applies a phase coherence algorithm to detect defects in structures to enhance the signal-to-noise ratio and resolution of imaging.The feasibility of the experiment was firstly analyzed based on COMSOL simulation,and the contribution of the signal amplitude at the damage point was enlarged by delaying the echo signal,and the single and multiple damages were identified and imaged in MATLAB software.The results show that the Lamb wave total focusing imaging method can effectively identify damages.And under the influence of the phase coherent imaging algorithm,it can mitigate structural noise,improve the signal-to-noise ratio,and enhance the resolution for adjacent damages,with a maximum error rate not exceeding 4.1%.This method significantly boosts the damage detection capability in plate structures.

关 键 词:LAMB波 薄板结构 损伤检测 全聚焦成像方法 相位相干 

分 类 号:V252.2[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象