检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jiangjian Xie Zhulin Hao Chunhe Hu Changchun Zhang Junguo Zhang
机构地区:[1]School of Technology,Beijing Forestry University,Beijing,100083,China [2]State Key Laboratory of Efficient Production of Forest Resources,Beijing Forestry University,Beijing,100083,China [3]Key Laboratory of National Forestry and Grassland Administration on Forestry Equipment and Automation,Beijing,100083,China [4]Research Center for Biodiversity Intelligent Monitoring,Beijing Forestry University,Beijing,100083,China
出 处:《Avian Research》2025年第1期119-128,共10页鸟类学研究(英文版)
基 金:supported by the Beijing Natural Science Foundation (5252014);the National Natural Science Foundation of China (62303063)。
摘 要:Bird vocalizations are pivotal for ecological monitoring,providing insights into biodiversity and ecosystem health.Traditional recognition methods often neglect phase information,resulting in incomplete feature representation.In this paper,we introduce a novel approach to bird vocalization recognition(BVR)that integrates both amplitude and phase information,leading to enhanced species identification.We propose MHARes Net,a deep learning(DL)model that employs residual blocks and a multi-head attention mechanism to capture salient features from logarithmic power(POW),Instantaneous Frequency(IF),and Group Delay(GD)extracted from bird vocalizations.Experiments on three bird vocalization datasets demonstrate our method's superior performance,achieving accuracy rates of 94%,98.9%,and 87.1%respectively.These results indicate that our approach provides a more effective representation of bird vocalizations,outperforming existing methods.This integration of phase information in BVR is innovative and significantly advances the field of automatic bird monitoring technology,offering valuable tools for ecological research and conservation efforts.
关 键 词:Bird vocalization recognition Feature fusion Phase information Residual network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222