检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuchen Gu Xianghong Jin Yuan Li
机构地区:[1]International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China [2]Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
出 处:《Chinese Physics Letters》2025年第2期98-108,共11页中国物理快报(英文版)
基 金:supported by the National Basic Research Program of China(Grant No.2021YFA1401901);the National Natural Science Foundation of China(Grant No.12474138)。
摘 要:The Kitaev honeycomb model has received significant attention due to its exactly solvable quantum spin liquid ground states and fractionalized excitations.Layered cobalt oxides have been considered as a promising platform for realizing this model.However,in contrast to the conventional wisdom regarding the single-q zigzag magnetic order inferred from previous studies of the candidate materials Na_(2)IrO_(3) and α-RuCl_(3),recent experiments on two representative honeycomb cobalt oxides,hexagonal Na_(2)Co_(2)TeO_(6) and monoclinic Na_(3)Co_(2)SbO_(6),have uncovered evidence for more complex multi-q zigzag order variants.This review surveys the experimental strategies used to distinguish between single-and multi-q orders,along with the crystallographic symmetries of cobalt oxides,in comparison with previously studied systems.The general formation mechanism of multi-q order is also briefly discussed.The goal is to provide a solid ground for examining the relevance of multi-q order in honeycomb cobalt oxides and discuss its implications for the microscopic model of these intriguing quantum magnets.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.236.39