检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘璐琪 尹玉莹 黄美茹 马付良 曾志翔 LIU Luqi;YIN Yuying;HUANG Meiru;MA Fuliang;ZENG Zhixiang(Key Laboratory of Advanced Marine Materials,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China;College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China;School of Materials Science and Chemical Engineering,Ningbo University,Ningbo 315211,China)
机构地区:[1]中国科学院宁波材料技术与工程研究所海洋关键材料重点实验室,宁波315201 [2]中国科学院大学材料科学与光电技术学院,北京100049 [3]宁波大学材料科学与化学工程学院,宁波315211
出 处:《中国表面工程》2024年第6期354-363,共10页China Surface Engineering
基 金:国家自然科学基金(52105229)。
摘 要:氢气泡模板法电沉积技术制备的多孔金属薄膜具有孔隙率高、密度小和成本低的特点,已被广泛用于电化学电容器和储能等领域。近年来,该技术被应用于制备均热板中的吸液芯,旨在得到具有高毛细性能的超薄多孔吸液芯镀层。但高孔隙率金属镀层的结合力不足的问题尚未得到充分研究和解决。采用多步电沉积法制备出多孔的CuNi吸液芯镀层,通过SEM、XRD、EDS和3D轮廓仪表征多孔镀层的形貌、化学组成和表面粗糙度。采用划格测试和超声测试分别研究Cu镀层以及CuNi镀层的结合性能。除此以外,对比Cu镀层和CuNi镀层的润湿性。结果表明:与Cu镀层相比,形成Cu-Ni固溶体的CuNi镀层的结合性能得到提升。经过30 min的超声测试,CuNi镀层的质量损失率(0.61%)远远低于Cu镀层的质量损失率(2.58%)。而且,CuNi镀层的水滴铺展速率和水爬升速率并未降低。水在CuNi镀层(<60μm)上具有0.43 mm/s的爬升速率,并可在0.2 s内完全铺展。采用多步电沉积法制备具有强结合性能的CuNi多孔镀层,可为开发稳定高效的均热板提供新的技术途径。The hydrogen-bubble template method is widely used to create porous metal films owing to its high porosity, low density,and low cost. This technology has been applied in various fields, including electrochemistry and energy storage. Recently, it has been innovatively utilized to create porous wicks for vapor chambers to produce ultrathin porous coatings with high capillary performance.However, the subpar mechanical stability of porous wicks hinders efficient two-phase heat transfer from the vapor chamber. The issue of insufficient bonding in high-porosity metal coatings has not been comprehensively investigated or resolved. Hence, a multistep electrodeposition process followed by heat treatment at 500 ℃ is performed to achieve porous Cu Ni coatings. First, a porous Cu coating is deposited onto a brass substrate. Hydrogen and copper ions reduce simultaneously at the cathode in acidic and overpotential environments. Hydrogen bubbles formed separately from the plating solution serve as a dynamic model that affects the growth of copper particles, thus resulting in the formation of a porous copper coating. Subsequently, a nickel coating is deposited electrochemically and then exposed to 500 ℃ to achieve a CuNi coating. Scanning electron microscopy and energy-dispersive X-ray spectroscopy results show that the copper branch crystals are intertwined and arranged in a honeycomb structure, with a combination of large and small pores. The metal coating, which comprises fine Ni particles, uniformly shielded the porous Cu surfaces.Three-dimensional profilometry is performed to evaluate the surface roughness and thickness of the CuNi coating. The surface roughness(arithmetic mean deviation=12.6 μm) and thickness(59.8 μm) of the Cu Ni coating are higher than those of porous Cu coatings. Nevertheless, the thickness of the CuNi coating is much lower than that of the wick in most ultrathin vapor chambers. X-ray diffraction analysis show that the Cu and Ni in the CuNi coatings formed a solid solution, thus enhancing the bond
分 类 号:TQ153[化学工程—电化学工业] O614[理学—无机化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42