机构地区:[1]江西理工大学化学化工学院,赣州341000 [2]中国科学院宁波材料技术与工程研究所海洋关键材料重点实验室,宁波315201 [3]浙江省白马湖实验室有限公司,杭州311121 [4]宁波市电力设计院有限公司,宁波315000
出 处:《中国表面工程》2024年第6期377-390,共14页China Surface Engineering
基 金:国家重点研发计划项目(2023YFC2809901);宁波市电力设计院有限公司科技项目(KJXM2022053);大型火电厂烟气余热深度利用自洁板式换热器研发及工程应用(ZB23YQOFG037F)。
摘 要:海工装备暴露在腐蚀最为严重的浪花飞溅区,会遭受力学-化学/电化学腐蚀的耦合损伤,造成严重的金属腐蚀。涂装抗冲蚀涂层是减缓海工装备冲蚀磨损的重要手段。石墨氮化碳(g-C_(3)N_(4))不仅具有良好的化学稳定性和力学性能,还具有类石墨烯的二维层状结构,可作为功能填料来提高有机涂层的综合防护性能。但g-C_(3)N_(4)易团聚,直接与环氧树脂复合会产生缺陷,导致涂层快速失效。采用磺化聚苯胺(SPANi)对g-C_(3)N_(4)改性得到g-C_(3)N_(4)@SPANi,并与厚朴酚基四官能环氧树脂(MTEP)结合制备防腐和抗冲蚀涂料。采用拉伸应力应变、电化学阻抗和固/液/气三相流冲蚀机对环氧复合涂料的力学性能、防腐性能和抗冲蚀防护性能进行表征,发现在纯MTEP中添加0.5wt.%g-C_(3)N_(4)@SPANi,其拉伸强度和断裂应变为48.3 MPa和8.75%,分别比纯MTEP提高68.8%和19.05%,抗冲蚀试验后环氧复合涂层的质量损失和体积损失分别比纯MTEP降低了68.41%和66.39%,在3.5wt.%Na Cl溶液浸泡60 d后环氧复合涂层低频阻抗模值为3.25 GΩ·cm^(2),比纯MTEP低频阻抗模值0.112 MΩ·cm^(2)提高四个数量级。环氧复合涂层防腐和抗冲蚀性能的提升,主要归功于SPANi在g-C_(3)N_(4)表面的接枝增加了g-C_(3)N_(4)表面粗糙度,同时g-C_(3)N_(4)@SPANi与环氧树脂兼容性好,提高了涂层的致密性和韧性,进而提高复合涂层的抗冲蚀性能。因此,通过利用SPANi对g-C_(3)N_(4)化学改性,能有效降低水分子向环氧涂层内部的渗透速率,为新型功能填料在环氧涂层中的应用提供新思路。As inland resources continue to be depleted,the exploration and exploitation of marine resources have expanded.However,the marine engineering equipment used in this process,including ships and deep-sea probes,undergoes corrosion,owing to the complex marine environment.Additionally,in the splash zone,the impact of seawater,oxygen,and hard solid particles causes erosion wear and chemical/electrochemical corrosion on metal equipment,which significantly reduces the service life of marine engineering equipment in marine environments.Protective coatings are applied to counteract the impact damage to marine engineering equipment.However,epoxy coatings,owing to their high cross-linking density and brittleness,are prone to delamination and failure upon impact with seawater.The curing process also generates significant shrinkage,which allows water to penetrate the coating and contact the metal substrate,thereby leading to corrosion.Therefore,enhancing the interfacial bonding strengths of epoxy coatings by incorporating functional fillers can effectively resist the adverse effects of seawater impact.Graphitic carbon nitride (g-C_(3)N_(4)) exhibits excellent chemical stability and mechanical properties,and its two-dimensional graphene-like layered structure effectively blocks seawater.Functionalizing g-C_(3)N_(4) to improve its dispersibility and corrosion protection is beneficial.In this study,in situ polymerization was employed to graft and dope g-C_(3)N_(4) surfaces with p-aminobenzenesulfonic acid (ASA) modified polyaniline(PANi) nanofibers,thereby resulting in a g-C_(3)N_(4)@SPANi composite functional filler.This filler was combined with a magnolia phenolic tetrafunctional epoxy resin (MTEP) to prepare anti-corrosion and anti-erosion coatings.The phase and structure of the fillers were analyzed using X-ray powder diffraction (XRD),Fourier transform infrared spectroscopy (FTIR),and X-ray photoelectron spectroscopy (XPS).The microstructure of the fillers was examined using transmission electron microscopy,and the cross-se
关 键 词:石墨氮化碳 磺化聚苯胺 厚朴酚基四官能环氧树脂 涂层 冲蚀
分 类 号:TB332[一般工业技术—材料科学与工程] TQ638[化学工程—精细化工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...