内衬式岩洞储氢三维热-流-固耦合模型及洞群运营稳定性分析  

Three-dimensional thermal-fluid-structure coupling model and stability analysis of hydrogen storage operation in underground lined rock cavern group

在线阅读下载全文

作  者:蔚立元[1] 弭宪震 胡波文 李树忱 刘日成[1] 叶继红 YU Liyuan;MI Xianzhen;HU Bowen;LI Shuchen;LIU Richeng;YE Jihong(State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China;State Key Laboratory Cultivation Base for Gas Geology and Gas Control,Henan Polytechnic University,Jiaozuo,Henan 454003,China;School of Mechanics and Civil Engineering,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China)

机构地区:[1]中国矿业大学深地工程智能建造与健康运维全国重点实验室,江苏徐州州221116 [2]河南理工大学河南省瓦斯地质与瓦斯治理重点实验室,河南焦作454003 [3]中国矿业大学力学与土木工程学院,江苏徐州221116

出  处:《中国矿业大学学报》2024年第6期1099-1116,共18页Journal of China University of Mining & Technology

基  金:江苏省碳达峰碳中和科技创新专项前沿基础项目(BK20220025);河南省瓦斯地质与瓦斯治理重点实验室开放基金项目(WS2023B04);江苏省研究生科研与实践创新计划资助项目(KYCX24_2823)。

摘  要:清洁可再生能源是实现双碳目标的根本途径,地下内衬式岩洞储氢是解决其波动性和间歇性的有效方式之一.基于气体热流动方程、湍流方程以及固体热传导方程、热弹性力学方程建立了内衬式岩洞储氢的三维热-流-固多场耦合模型,并验证了其有效性和优越性;通过COMSOL Multiphysics软件求解热-流-固耦合模型分析了注采过程中洞室内气体的可压缩热流动特征及衬砌层与围岩的热力学响应,进一步探究了洞室埋深、间距、气体注入温度和注采方式对洞群稳定性的影响.结果表明:氢气温度和压力随注气增加、采气降低,洞室内温度分布不均,注气结束时顶底部温差达9.7 K;两洞室同步注采时,洞室围岩和衬砌层的第一主应力随注气进行而增大,注气结束时洞顶最大拉应力达3.12 MPa,是最容易出现拉伸破坏的位置,在采气阶段第一主应力急剧下降;洞室围岩位移与第一主应力变化一致,注气结束时洞室边墙中部区域的最大位移达到20.2 mm,埋深对洞室位移影响不大;两洞室间距越大,洞室间中隔岩柱的应力集中程度就越小,间距大于两倍洞径后,中隔岩柱的应力状态接近于原岩状态;注入温度从266.15 K提高到306.15 K,注气结束洞室压力增高了4.1%;一个洞室储气,另一个洞室注采是最危险工况,而一个洞室待储,另一个洞室注采是最安全工况;实际运营中,应优化注采方案并采取具体工艺措施来维护储氢洞室群的长期稳定.本文研究结论有望为工程实际提供一定的借鉴.Clean and renewable energy is the fundamental way to achieve the goal of“double carbon”.Hydrogen storage in underground lined rock caverns is one of the effective means to reduce its volatility and intermittency.Therefore,a three-dimensional thermal-fluid-structure multi-field coupling model of hydrogen storage in lined rock caverns was established based on gas thermal flow equation,turbulence equation,solid heat conduction equation and thermoelastic mechanics equation,and its effectiveness and superiority were verified.The thermal-fluid-structure coupling model was solved by COMSOL Multiphysics software.And the compressible thermal flow characteristics of the gas in the cavern and the thermodynamic response of the lining layer and the surrounding rock during the injection-production process were analyzed.Furthermore,the influences of buried depth,spacing,gas injection temperature and injection-production mode on the stability of cavern group are further explored.The results show that the hydrogen temperature and pressure increase with gas injection and decrease with gas production.The temperature distribution in the cavern is uneven,and the temperature difference between the top and the bottom reaches 9.7 K at the end of gas injection.When the two caverns are injected and mined simultaneously,the first principal stress of the surrounding rock and lining layer of the caverns increases with the gas injection,and decreases sharply in the gas extraction stage.At the end of gas injection,the maximum tensile stress,is 3.12 MPa,appearing at the top of the cavern,which is the most prone to tensile failure.The displacement of the surrounding rock of the cavern is consistent with the change of the first principal stress.The maximum displacement of the central area of the side wall of the cavern reaches 20.2 mm at the end of the gas injection,and the buried depth has little effect on the displacement of the cavern.The larger the spacing between the two caverns,the smaller the stress concentration degree of the middle r

关 键 词:内衬式岩洞 地下储氢 热-流-固耦合 注采方案 洞室群稳定性 

分 类 号:TU45[建筑科学—岩土工程] TU91[建筑科学—土工工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象