基于大模型检索增强生成的气象数据库问答模型实现  

Implementation of Meteorological Database Question-Answering Based on Large-Scale Model Retrieval-Augmentation Generation

作  者:江双五[1] 张嘉玮 华连生[1] 杨菁林 JIANG Shuangwu;ZHANG Jiawei;HUA Liansheng;YANG Jinglin(Anhui Meteorological Information Center,Hefei 230031,China;Beihang University,Beijing 100191,China;National Computer Network Emergency Response Technical Team/Coordination Center of China,Beijing 100029,China)

机构地区:[1]安徽省气象信息中心,合肥230031 [2]北京航空航天大学,北京100191 [3]国家计算机网络应急技术处理协调中心,北京100029

出  处:《计算机工程与应用》2025年第5期113-121,共9页Computer Engineering and Applications

基  金:国家重点研发计划(2022YFC3321002);国家档案局科技项目(2022-X-060);中国气象局档案建设专项(YBSZX2024007);安徽省气象局创新团队建设计划。

摘  要:随着信息检索和知识获取需求的增加,智能问答系统在多个垂直领域得到广泛应用。然而,在气象领域仍缺乏专门的智能问答系统研究,严重限制了气象信息的高效利用和气象系统的服务效率。针对这一需求,提出了一种面向气象数据库的大模型检索智能问答技术实现方案。该方案设计了一种基于关系型数据库(SQL)与文档型数据(NoSQL)的多通道查询路由(multi-channel retrieval router,McRR)方法,为了适配数据库进行大模型查询以及增强大模型对查询表的理解,分别提出指令查询转换方法与数据库表摘要方法DNSUM,提升大模型对数据库的语义理解能力,通过结合问题理解、重排序器和响应生成等关键模块,构建了一个端到端的智能问答模型,可实现多数据源的相关知识检索及答案生成。实验结果显示,该模型可以有效理解用户问题并生成准确的答案,具有良好的检索和响应能力。不仅为气象领域提供了一种智能问答的解决方案,也为气象智能问答技术提供了新的应用实施参考。With the increasing demand for information retrieval and knowledge acquisition,question-answering systems are widely applied across various domains.However,there is a notable lack of specialized question-answering system research in the meteorological field,which severely limits the efficient utilization of meteorological information and the service efficiency of meteorological systems.To address this gap,it proposes a retrieval-augmented generation based questionanswering implementation scheme for meteorological databases.This scheme designs a multi-channel query routing(McRR)method based on relational databases(SQL)and document-oriented data(NoSQL).Additionally,to adapt large model queries to databases and enhance the model’s understanding of query tables,the paper proposes an instruction query conversion method and a database table summarization method(termed as DNSUM)to improve the model’s semantic understanding of databases.Furthermore,by integrating key modules such as question understanding,re-rankers,and response generation,it constructs an end-to-end intelligent question-answering engine capable of retrieving relevant knowledge and generating answers from multiple data sources.Experimental results on the constructed meteorological question-answering dataset demonstrate that this engine effectively understands user queries and generates accurate answers,exhibiting strong retrieval and response capabilities.This research not only provides a question-answering solution for the meteorological field but also offers new directions for the application of question-answering technology in vertical domains.

关 键 词:数据库查询 数据库问答 大语言模型 检索增强生成 气象问答 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象