基于雾计算的智能医疗保健系统高效身份认证协议  

Efficient Authentication Protocol for Smart Healthcare Systems Based on Fog Computing

作  者:何明祥 付青松 李冠 HE Mingxiang;FU Qingsong;LI Guan(College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao,Shandong 266590,China)

机构地区:[1]山东科技大学计算机科学与工程学院,山东青岛266590

出  处:《计算机工程与应用》2025年第5期289-297,共9页Computer Engineering and Applications

摘  要:智能可穿戴设备传感器收集用户的健康数据并通过无线信道传输到云服务器,数据传输过程存在计算延迟与安全攻击。雾计算辅助云计算完成数据分析,提高了云服务器响应效率,但对安全性提出了更高的要求。基于椭圆曲线Diffie-Hellman难题提出了一种安全高效的身份认证与密钥协商(AKA)协议,该协议结合智能卡、口令和生物特征识别技术,使用单向哈希函数与椭圆曲线保护用户的匿名性,使用随机数、时间戳确保传输消息的有效性,实现了相互身份认证并建立了三方会话密钥。非形式化的安全性分析表明,该协议可以抵抗目前所知的各种攻击,随机预言机(ROR)模型和Proverif形式化安全工具证明了协议的安全性。与相关文献对比表明,所提协议的计算开销是其他协议的66%,具有更高的安全性和较好的性能。Smart wearable device sensors collect health data from the user,and transmit it to the cloud server through the wireless channel.The data transmission process suffers from computational delays and security attacks.Fog computing assists cloud computing to complete data analysis and improves the efficiency of cloud server response,but puts higher requirements on security.A secure and efficient authentication and key agreement(AKA)protocol is proposed based on the elliptic curve Diffie-Hellman(ECDH)problem.The protocol combines smart cards,passwords with biometrics to realize mutual authentication and establish three-party session keys.User anonymity is protected using one-way hash functions with elliptic curves.The validity of transmitted messages is ensured using random numbers and timestamps.The informal security analysis shows that the proposed protocol can resist various known attacks.The real-oracle random(ROR)model and the Proverif prove the security of the protocol.Comparison with related literature shows that the computational overhead of the proposed protocol represents 66%of that of the protocols proposed in other literature.This comparison result provides higher security and better performance.

关 键 词:雾计算 身份认证 密钥协商 智能医疗保健系统 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象