检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rabindra NathMondal Giulio Lorenzini Sidhartha Bhowmick Sreedham Chandra Adhikari
机构地区:[1]Department of Mathematics,Jagannath University,Dhaka,1100,Bangladesh [2]Department of Industrial Systems and Technologies Engineering,University of Parma,Parma,43124,Italy [3]Department of Mechanical and Aerospace Engineering,Monash University,Melbourne,VIC 3800,Australia
出 处:《Frontiers in Heat and Mass Transfer》2025年第1期249-278,共30页热量和质量传递前沿(英文)
摘 要:The present study investigates the non-isothermal flow and energy distribution through a loosely bent rectangular duct using a spectral-based numerical approach over a wide range of the Dean number 0<Dn≤3000.Unlike previous research,this work offers novel insights by conducting a grid-point-specific velocity analysis and identifying new bifurcation structures.The study reveals how centrifugal and buoyancy forces interact to produce steady,periodic,and chaotic flow regimes significantly influencing heat transfer performance.The Newton-Raphson method is employed to explore four asymmetric steady branches,with vortex solutions ranging from 2-to 12 vortices.Unsteady flow characteristics are analyzed exquisitely by performing time-advancement of the solutions and the flow regimes are shown as a percentage of total flow with longitudinal vortex generation.Axial flow,secondary flow,and temperature profiles have been depicted in accordance with Dn to wander the flow pattern,and it is predicted that the time-dependent flow(TDF)consists of asymmetric 2-to 10-vortex solutions.The significant findings of this study include the axial displacement of the circulations due to the influence of the time-varying temperature dispersal applied along the wall.Chaotic flows,which dominate the higher Dean number range,are shown to enhance heat convection due to increased fluid mixing.A detailed comparison with prior research demonstrates the advantages of this approach,particularly in capturing complex non-linear behaviors.The findings of this study provide practical guidelines for optimizing duct designs to maximize heat transfer and suggest future research directions,such as using nanofluids or studying Magneto-hydrodynamics in the same configuration.
关 键 词:Bending duct steady solutions time-advancement energy distribution VORTEX
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.124.142