检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王涛 白雪飞[1] 王文剑[2,3] WANG Tao;BAI Xuefei;WANG Wenjian(School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China;Key Laboratory of Computational Intelligence and Chinese Information Processing(Shanxi University),Ministry of Education,Taiyuan 030006,China;Department of Network Security,Shanxi Police College,Taiyuan 030401,China)
机构地区:[1]山西大学计算机与信息技术学院,太原030006 [2]计算智能与中文信息处理教育部重点实验室(山西大学),太原030006 [3]山西警察学院网络安全保卫系,太原030401
出 处:《计算机科学》2025年第3期41-49,共9页Computer Science
基 金:国家自然科学基金(U21A20513,62076154)。
摘 要:针对肾癌三维CT图像存在病变区域多尺度、边缘像素稀疏、对比度低以及肿瘤形状复杂且不规则等问题,提出一种基于边缘增强的选择性特征融合肾癌三维CT图像分割网络(EE-SFF U-Net)。EE-SFF U-Net采用基于U-Net的对称编解码网络架构,编码路径中包含一个用于强化边缘信息的边缘增强模块,可有效挖掘、利用浅层特征信息以缓解边缘像素稀疏问题,同时避免小目标的漏检。此外,在网络的跳跃连接中,设计一个选择性特征融合模块,使得深浅层特征相互补充,实现不同信息的有效聚合。最后提出一个综合Generalized Dice Loss和Focal Loss的混合损失函数,利用动态权重调整策略,实现损失函数的优化训练,并降低病变区域多尺度和肿瘤形状大小不规则带来的影响。所提方法在保证病变区域整体定位准确的同时,强化对小目标特征信息的挖掘利用,从而提高分割的准确性和鲁棒性。在KiTS19公开数据集上的实验结果表明,与其他分割算法相比,该方法各项指标表现良好,分割性能有显著提升。Aiming at the problems of multi-scale lesion areas,sparse edge pixels,low contrast,as well as complex and irregular tumor shape in 3D CT images of renal cancer,this paper proposes a selective feature fusion 3D CT image segmentation network based on edge enhancement(EE-SFF U-Net).EE-SFF U-Net adopts the symmetric encoder-decoder network architecture based on U-Net,and the encoding path contains an edge enhancement module for strengthening edge information,which can effectively mine and utilize shallow feature information to alleviate the sparsity problem of edge pixels and avoid missing detection of small targets.In addition,in the skip connections of the network,a selective feature fusion module is designed to make the deep and shallow features complement each other and realize the effective aggregation of different information.Finally,a hybrid loss function with Generalized Dice Loss and Focal Loss is proposed.The dynamic weight adjustment strategy is used to realize the optimal training of the loss function,and to improve the influence of multi-scale lesions and irregular tumor shape and size.The proposed method not only ensures the accuracy of the overall localization of the lesion area,but also strengthens the mining and utilization of small target feature information,so as to improve the accuracy and robustness of segmentation.The experimental results on KiTS19 public dataset show that the proposed method performs well in various indexes and significantly improves the segmentation performance compared with other segmentation algorithms.
关 键 词:肾癌三维CT分割 边缘增强 选择性特征融合 3D U-Net 深度学习
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7