机构地区:[1]西北工业大学计算机学院,西安710072 [2]哈尔滨工程大学,哈尔滨150001
出 处:《计算机科学》2025年第3期326-337,共12页Computer Science
基 金:国家杰出青年科学基金(62025205);国家自然科学基金(62032020,62302017)。
摘 要:移动边缘计算因具有通信成本低、服务响应快等优势,已经成为适应智能物联网应用需求的重要计算模式。在实际应用场景中,一方面,单一设备能够获取到的数据通常有限;另一方面,边缘计算环境通常是动态多变的。针对以上问题,主要对边缘联邦持续学习展开研究,将脉冲神经网络(SNN)创新性地引入到边缘联邦持续学习框架中,在降低设备计算和通信资源消耗的同时,解决本地设备在动态边缘环境中所面临的灾难性遗忘问题。利用SNN解决边缘联邦持续学习问题主要面临两个方面的挑战:首先,传统脉冲神经网络没有考虑持续增加的输入数据,难以在较长的时间跨度内存储和更新知识,导致无法实现有效的持续学习;其次,不同设备学习到的SNN模型存在差异,通过传统联邦聚合获得的全局模型无法在每个边缘设备上取得较好的性能。因此,提出了一种新的脉冲神经网络增强的边缘联邦持续学习(SNN-Enhanced Edge-FCL)方法。针对挑战一,提出了面向边缘设备的类脑持续学习算法,在单个设备上采用类脑脉冲神经网络进行本地训练,同时采用基于羊群效应的样本选择策略保存历史任务的代表样本;针对挑战二,提出了多设备协同的全局自适应聚合算法,基于SNN工作原理设计脉冲数据质量指标,并利用数据驱动的动态加权聚合方法,在全局模型聚合时对不同设备模型赋予相应权重以提升全局模型的泛化性。实验结果表明,相比基于传统神经网络的边缘联邦持续学习方法,SNN-Enhanced Edge-FCL方法在边缘设备上消耗的通信资源和计算资源减少了92%,且边缘设备在测试集上5个连续任务中的准确率都在87%以上。Mobile edge computing has become an important computing model adapted to the needs of smart IoT applications,with advantages such as low communication cost and fast service response.In practical application scenarios,on the one hand,the data acquired by a single device is usually limited;on the other hand,the edge computing environment is usually dynamic and variable.Aiming at the above problems,this paper focuses on edge federated continuous learning,which innovatively introduces spiking neural networks(SNNs)into the edge federated continuous learning framework to solve the catastrophic forgetting problem faced by local devices in dynamic edge environments while reducing the consumption of device computation and communication resources.The use of SNNs to solve the edge federated continuous learning problem faces two main challenges.First,traditional spiking neural networks do not take into account the continuously increasing input data,and it is difficult to store and update the knowledge over a long time span,which results in the inability to realize effective continuous learning.Second,there are variations in the SNN models learned by different devices,and the global model obtained by traditional federated aggregation fails to achieve a better performance on each edge device achieve better performance on each edge device.Therefore,a new spiking neural network-enhanced edge federation continuous learning(SNN-Enhanced Edge-FCL)method is proposed.To address challenge I,a brain-like continuous learning algorithm for edge devices is proposed,which employs a brain-like spiking neural network for local training on a single device,and at the same time adopts a sample selection strategy based on the flocking effect to save representative samples of historical tasks.To address challenge II,a global adaptive aggregation algorithm with multi-device collaboration is proposed.Based on the working principle of SNN,the spiking data quality index is designed,and through the data-driven dynamic weighted aggregation method to as
关 键 词:移动边缘计算 资源受限 灾难性遗忘 联邦学习 持续学习 类脑脉冲神经网络
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...