压电纤维复合材料智能传感器的有限元预测与器件性能  

Finite element prediction and device performance of piezoelectric fiber composite based smart sensor

在线阅读下载全文

作  者:高裕昆 赵洁 周晶晶 周静[3,4] GAO Yukun;ZHAO Jie;ZHOU Jingjing;ZHOU Jing(Qingdao Cixing New Material Co.,Ltd.,Qingdao 266000,China;Key Laboratory of Functional Materials and Devices for Informatics of Anhui Education Institutes,Fuyang Normal University,Fuyang 236000,China;School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430000,China;Sanya Science and Education Innovation Park,Wuhan University of Technology,Sanya 572024,China)

机构地区:[1]青岛瓷兴新材料有限公司,青岛266000 [2]阜阳师范大学安徽省重点实验室,阜阳236000 [3]武汉理工大学材料工程学院,武汉430000 [4]武汉理工大学三亚科教创新园,三亚572024

出  处:《物理学报》2025年第5期212-221,共10页Acta Physica Sinica

基  金:信息功能材料结构与器件安徽普通高校重点实验室开放课题(批准号:FMDI202407);阜阳师范大学青年人才基金重点项目(批准号:rcxm202402);海南省自然科学基金创新研究团队项目(批准号:524CXTD431)资助的课题.

摘  要:压电纤维复合材料(macro fiber composite,MFC)具有高压电性、高柔韧性和低损耗等优点,被广泛应用于航空、航天、民用和军事等领域.然而,目前MFC传感器的研究主要聚焦于材料应用,对于MFC传感器件仿真建模还缺乏系统性的研究.本工作分别建立了代表性体积元模型、直接模型和混合模型,从细节到整体、从微观到宏观对MFC的有限元模型进行了建模和分析.一方面通过等效体积元模型,掌握MFC内部的电场分布规律,为力-电耦合提供理论依据;另一方面通过直接模型和混合模型,对MFC的实体结构进行整体建模和边界条件的加载,为MFC贴片式传感和共振式传感的分析提供理论依据,有效预测了MFC智能元件传感器的传感性能.仿真结果表明,共振式传感器性能远优于贴片式传感器,当激振加速度为5 m/s^(2)、悬臂梁基板长度为80 mm时,计算得到的MFC共振式传感器的谐振频率为67 Hz,输出电压为4.17 V.实验结果表明,MFC传感器测试的谐振频率为74 Hz,输出电压为3.59 V,仿真计算结果与MFC传感器预测结果基本符合.此外,MFC传感器在低频工作时具有优异的传感灵敏度,传感灵敏度为7.35 V/g.可见,MFC在低频共振时具有优异的传感特性,构建的3种有限元模型可以有效预测MFC传感器的传感性能,为MFC传感器的性能预测提供了保障.Macro fiber composite(MFC)is extensively utilized in aviation,aerospace,civilian,and military domains due to its high piezoelectricity,flexibility,and minimal loss.Nevertheless,existing research on MFC sensors has focused on material applications,with a conspicuous lack of systematic investigation into the simulation and modeling of MFC sensor devices.In this study,three models,namely,a representative volume element(RVE)model,a direct model,and a Hybrid model are established to analyze the finite element models of MFC,covering the scales from micro to macro.On the one hand,the equivalent RVE model contributes to an understanding of the internal electric field distribution in MFC,thereby establishing a theoretical foundation for force-electric coupling.On the other hand,the application of the direct model and hybrid model accords with the boundary conditions in MFC applications,which lays a theoretical foundation for the stress sensing and resonance sensing mechanisms of MFC.These models constitute effective tools for predicting the sensing performance of MFC smart element sensors.The simulation outcomes indicate that resonant sensors exhibit significantly superior performance compared with patch sensors.Under the conditions where the excitation acceleration is 5 m/s^(2)and the cantilever substrate length is 80 mm,the simulated resonant frequency of the MFC resonant sensor is 67 Hz,with an output voltage of 4.17 V.Experimental results confirm these findings.It is reported that the resonant frequency is 74 Hz and the output voltage is 3.59 V for the MFC sensor.The remarkable consistency between the simulation results and experimental data of the MFC sensor deserves to be emphasized.In addition,the MFC sensor shows excellent sensing sensitivity at low frequencies,with a sensitivity of 7.35 V/g.Obviously,MFC shows remarkable sensing characteristics at low-frequency resonance.The three finite element models established in this work can well predict the sensing performance of MFC sensors,thus ensuring reliable predicti

关 键 词:压电纤维复合材料 (MFC) 传感器 性能预测 有限元模型 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置] TB332[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象