基于多特征融合的永磁电机转子失磁故障检测研究  

Study on Rotor Demagnetization Fault Detection of Permanent Magnet Motor Based on Multi-Feature Fusion

在线阅读下载全文

作  者:徐翔宇 郑银波 Xu Xiangyu;Zheng Yinbo(Shandong Boxinhua Intelligent Technology Co.,Ltd.,Jining Shandong 273100,China)

机构地区:[1]山东铂信华智能科技有限公司,山东济宁273100

出  处:《机械管理开发》2025年第2期254-256,共3页Mechanical Management and Development

摘  要:常规的电机转子失磁故障检测以故障信号分析为主,并未考虑到电磁噪声、机械振动等影响,检测结果存在失准的问题。基于此,设计了基于多特征融合的永磁电机转子失磁故障检测方法。提取永磁电机转子失磁故障特征,将失磁故障状态下的电动势、电压、电阻等特征考虑在内,为后续故障检测提供基础保障。基于多特征融合构建电机转子失磁故障检测模型,通过磁链、电压等运动方程,反映转子失磁故障状态,避免故障检测失误的问题。调整永磁电机转子失磁故障自适应检测参数,根据电机的实际运行状态,调整永磁电机转子失磁故障自适应检测参数,使故障检测模型适应不同的运行环境和工况条件。采用对比实验,验证了该方法的检测准确性更高,能够应用于实际生活中。Conventional motor rotor demagnetization fault detection is mainly based on fault signal analysis,which does not take into account the influence of electromagnetic noise,mechanical vibration,etc.,and the detection results have the problem of inaccuracy.Therefore,a permanent magnet motor rotor demagnetization fault detection method based on multi-feature fusion is designed.The rotor demagnetization fault features of the permanent magnet motor are extracted,and the electric potential,voltage,resistance and other features in the demagnetization fault state are taken into account,so as to provide a basic guarantee for the subsequent fault detection.Based on the multi-feature fusion,a rotor demagnetization fault detection model is constructed to reflect the rotor demagnetization fault state through the equations of motion of magnetic chain,voltage,etc.,so as to avoid the problem of fault detection error.Adaptive detection parameters of permanent magnet motor rotor demagnetization fault are adjusted according to the actual operating state of the motor,so that the fault detection model can adapt to diferent operating environments and working conditions.Comparison experiments are used to verify that the method has higher detection accuracy and can be applied in real life.

关 键 词:多特征融合 永磁电机 转子失磁 失磁故障 检测方法 

分 类 号:TD328[矿业工程—矿井建设]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象