基于专利文本挖掘的中国煤矿智能化技术演化分析  

Analysis on the Evolution of Intelligent Technology in China’s Coal Mines Based on Patent Text Mining

作  者:余葱卉 YU Conghui(School of Economics and Management,Anhui University of Science&Technology,Huainan 232001,Anhui,China)

机构地区:[1]安徽理工大学经济与管理学院,安徽淮南232001

出  处:《科技和产业》2025年第4期187-192,共6页Science Technology and Industry

基  金:国家自然科学基金(51874003);安徽省自然科学基金(1808085MG221)。

摘  要:研究中国煤矿智能化领域技术的整体现状和发展方向,对于企业技术研发和政策制定有着重要意义。以煤矿智能化技术专利为研究对象,运用LDA主题模型,从专利计量和技术主题等方面展开研究并预测发展趋势。结果表明,中国煤矿智能化技术处于发展期;专利被划分为10个技术主题,其中“智能采掘工作面”专利申请数量最多且持续增加,是研发热点。“灾害防治”“智能运输调度系统”“智能视频监控系统”“智能集中控制系统”和“智能算法”专利申请数量较多,“地质监测”和“瓦斯煤尘监测”增长速度快,以上技术发展前景较好。“信息基础设施”的申请数量较少且无明显变化,“矿用特种机器人”申请数量较低,研发应用能力亟待提升。It is of great significance to study the overall status and development direction of China’s coal mine intelligent technology for enterprise technology research and development and policy formulation.Taking the patent of intelligent technology in coal mine as the research object,the LDA theme model was used to carry out research and predict the development trend from the aspects of patent measurement and technical theme.The main results show that the intelligent technology of coal mines in China is in the development stage.Patents are divided into 10 technical topics,among which“intelligent mining face”has the largest number of patent applications and continues to increase,which is a hot spot for R&D.“Disaster prevention and control”“intelligent transportation dispatching system”“intelligent video surveillance system”“intelligent centralized control system”“intelligent algorithm”patent applications are relatively large,“geological monitoring”“gas and coal dust monitoring”are growing rapidly,and the development prospects of the above technologies are good.The number of applications for“information infrastructure”is small and has not changed significantly,and the number of applications for“mining special robots”is low,and the R&D and application capabilities need to be improved urgently.

关 键 词:煤矿智能化 LDA主题模型 专利挖掘 

分 类 号:G203[文化科学—传播学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象