基于点云密度自适应VAlpha-Shapes算法的隧道渗漏水检测  

Tunnel leakage detection based on density-adaptive variable-radius alpha-shapes algorithm for point clouds

在线阅读下载全文

作  者:潘国兵[1] 赵雪妍 陈昌文 虞洪兵 吴畏 金晓东 PAN Guobing;ZHAO Xueyan;CHEN Changwen;YU Hongbing;WU Wei;JIN Xiaodong(Smart Cities Institute,Chongqing Jiaotong University,Chongqing 400074,China;Chongqing Nanjiang Engineering Survey and Design Group Co.,Ltd.,Chongqing 401147,China)

机构地区:[1]重庆交通大学智慧城市学院,重庆400074 [2]重庆南江工程勘察设计集团有限公司,重庆401147

出  处:《测绘工程》2025年第2期1-7,23,共8页Engineering of Surveying and Mapping

基  金:国家自然科学基金资助项目(42074004)。

摘  要:针对传统图像数据和处理方法难以精确识别渗漏水区域,无法获取高精度渗漏水区域检测结果的问题,以及传统Alpha-Shapes算法对点云密度适应性差,难以捕捉点云细小特征的问题,文中基于激光点云数据的反射强度信息,对Alpha-Shapes算法进行改进,提出基于点云密度自适应的VAlpha-Shapes算法,实现隧道渗漏水病害快速自动化检测与分析。研究结果显示,相比传统的图像数据源,基于激光点云数据的反射强度信息能够更快速精确地完成渗漏水区域的提取;采用Alpha-Shapes算法能够将提取结果的精度从dm级提升到mm级,文中提出的基于点云密度自适应VAlpha-Shapes算法的提取精度又提高54.06%,对点云密度变化有更好地适应性,实现隧道渗漏水病害的快速高精度自动化检测。Tunnel water leakage detection plays a crucial role in ensuring tunnel safety and preventing accidents.Addressing the challenges of inaccurate identification of leakage areas and the inability to obtain high-precision results with traditional image data and processing methods,as well as the poor adaptability of traditional Alpha-Shapes algorithm to point cloud density and difficulty capturing fine features,this paper proposes an improved approach based on the reflectance intensity information of laser point cloud data.This approach introduces the Density-Adaptive VAlpha-Shapes algorithm for automated and rapid detection and analysis of tunnel water leakage diseases.The research results demonstrate that compared to traditional image data sources,leveraging reflectance intensity information from laser point cloud data enables faster and more accurate extraction of leakage areas.Furthermore,compared to traditional image processing methods,adopting the Alpha-Shapes algorithm enhances the precision of extraction from decimeter to millimeter level.Moreover,the proposed Density-Adaptive VAlpha-Shapes algorithm achieves a further improvement of 54.06%in extraction precision,demonstrating better adaptability to changes in point cloud density,thus achieving rapid and high-precision automated detection of tunnel water leakage diseases.

关 键 词:三维激光 渗漏水检测 反射强度 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象