采用LDA模型的美国《芯片与科学法案》主题挖掘及分析  

Theme Mining and Analysis of the U.S CHIPS and Science Act 2022 Using LDA Model

在线阅读下载全文

作  者:孙亚洲 李晓松 SUN Yazhou;LI Xiaosong(Military Science Information Research Center,Academy of Military Science,Beijing 100142,China;Unit 66018,Tianjin 300380,China)

机构地区:[1]军事科学院军事科学信息研究中心,北京100142 [2]66018部队,天津300380

出  处:《信息工程大学学报》2025年第1期120-126,共7页Journal of Information Engineering University

基  金:国家自然科学基金(72074219);国家社会科学基金(23ZDA119)。

摘  要:大国博弈背景下,开展美国《芯片与科学法案》研究是分析美国科技政策思维和趋势的有效途径。以法案原文为语料,采用隐性狄利克雷分布模型挖掘法案主题,获得美国《芯片与科学法案》的8个主题结果及对应关键词集合,进而开展深层次分析。结果表明,美国《芯片与科学法案》内容重点为半导体产业、财政资助条件、教育和科技创新、供应链安全、科学基础设施等5个方面;该法案的性质是由政府财政制定预算并拨款的支持、激励性法案,本质上是美国零和思维的产物;结果揭示了法案所包含的封闭和排他思想,美国科技政策将逐步倾向于自身发展而非协同发展,其制定思路基于科技博弈而非合作共赢。Under the background of great power game,the research on the U.S.CHIPS and Science Act 2022 is an effective way to analyze the thinking and trend of U.S science and technology policy in USA.Taking the original bill as the corpus,the latent dirichlet allocation model is used to mine the bill topics,and the results of eight topics and corresponding keyword sets of the CHIP and Science Act are obtained,and then the in-depth analysis is carried out.The results show that the content of the CHIP and Science Act focuses on the semiconductor industry,financial support conditions,education and technological innovation,supply chain security,and scientific infrastructure.The nature of the bill is an incentive bill supported by the government budget and funding,which is essentially the product of zero sum thinking in the USA.The results reveal the closed and exclusive thoughts contained in the bill,and the U.S.science and technology policy will gradually tend to self-development rather than collaborative development,and its formulation idea is based on science and technology game rather than cooperation and win-win.

关 键 词:国防科技 情报安全 政策评估 信息挖掘 LDA模型 

分 类 号:E91[军事] TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象