凉山近地面风场数值模拟对不同边界层方案的敏感性  

Sensitivity of the numerical simulation of near-surface wind field to different boundary layer parameterization schemes in Liangshan Mountain area

在线阅读下载全文

作  者:李月波 于星 宋树刚 高志球 LI Yuebo;YU Xing;SONG Shugang;GAO Zhiqiu(School of Atmospheric Physics,Nanjing University of Information Science&Technology,Nanjing 210044,China;Shenzhen Institute of Artificial Intelligence and Robotics for Society,Guangdong Shenzhen 518100,China;Unit 93110,Beijing 100843,China)

机构地区:[1]南京信息工程大学大气物理学院,南京210044 [2]深圳市人工智能与机器人研究院,广东深圳518100 [3]93110部队,北京100843

出  处:《气象科学》2025年第1期118-129,共12页Journal of the Meteorological Sciences

基  金:国家自然科学基金资助项目(41875013)。

摘  要:风是近地层大气的主要物理量,也是影响林火蔓延的重要因素。本文以2020年“3·30”西昌森林火灾周围的近地面风场为研究对象,基于中尺度数值模式(Weather Research and Forecasting,WRF),采用6种边界层方案进行敏感性实验。结果表明,YSU和Shin-Hong方案对凉山10 m风速模拟误差最小,YSU和MYNN3方案对凉山10 m风向模拟误差最小;YSU和Shin-Hong方案能模拟出西昌火灾区风场分布以及风向转变;在西昌站点YSU方案模拟的边界层结构最接近观测值,能较好地表现边界层内动力和热力结构。Wind is the main physical quantity of near-ground atmosphere,and it is also an important factor affecting the spread of forest fires.In this paper,the near-surface wind field around the“3.30”forest fire in Xichang in 2020 was taken as the research object.Based on the mesoscale numerical model WRF,six boundary layer parameterization schemes were used to conduct sensitivity experiments.The results show that YSU and Shin-Hong schemes have the least error in simulating 10 m wind speed in Liangshan,and YSU and MYNN3 schemes have the least error in simulating 10 m wind speed in Liangshan.YSU and Shin-Hong schemes can simulate the wind field distribution and wind direction change in Xichang fire area.The boundary layer structure simulated by YSU scheme at Xichang station is closest to the observed value and can better represent the dynamic and thermal structures in the boundary layer.

关 键 词:10 m风场 凉山地区 边界层方案 WRF模式 数值模拟 

分 类 号:P456.7[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象