检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李钰 李欣荣 刘保仓 邓晓裕 郭涛 史艳丽 年芳[1,4] 李飞[2] 许辉 徐国延 王新基 LI Yu;LI Xinrong;LIU Baocang;DENG Xiaoyu;GUO Tao;SHI Yanli;NIAN Fang;LI Fei;XU Hui;XU Guoyan;WANG Xinji(College of Animal Science and Technology,Gansu Agricultural University,Lanzhou 730070,Gansu,China;College of Grassland Agricultural Science and Technology,Lanzhou University,Lanzhou 730000,Gansu,China;Aksu Taikun Feed Co.,Ltd.,Aksu 842008,Xinjiang,China;College of Science,Gansu Agricultural University,Lanzhou 730070,Gansu,China;Minqin Defu Agricultural Technology Co.,Ltd.,Wuwei 733300,Gansu,China;Animal Husbandry and Veterinary Station of Datan Town,Agriculture and Rural Bureau,Minqin County,Wuwei 733399,Gansu,China;Minqin County Animal Husbandry and Veterinary Workstation,Wuwei 733399,Gansu,China)
机构地区:[1]甘肃农业大学动物科学技术学院,甘肃兰州730070 [2]兰州大学草地农业科技学院,甘肃兰州730000 [3]阿克苏泰昆饲料有限责任公司,新疆阿克苏842008 [4]甘肃农业大学理学院,甘肃兰州730070 [5]民勤县德福农业科技有限公司,甘肃武威733300 [6]民勤县农业农村局大滩镇畜牧兽医站,甘肃武威733399 [7]民勤县畜牧兽医工作站,甘肃武威733399
出 处:《草业科学》2025年第2期433-442,共10页Pratacultural Science
基 金:甘肃省重点研发计划项目(20YF8NH158);自治区科技支疆计划项目(2022E02140)。
摘 要:本研究旨在利用近红外光谱技术(NIRS)构建茴香(Foeniculum vulgare)秸秆营养成分预测模型。2022−2023年于甘肃省民勤县采集109份茴香秸秆样品,使用近红外光谱仪扫描样品得到吸光度值,分别测定其干物质(DM)、粗蛋白质(CP)、有机物(OM)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、粗脂肪(EE)和粗灰分(Ash)的含量;运用改良偏最小二乘法(MPLS)分别构建各营养成分预测模型并进行外部验证。结果表明:茴香秸秆中DM、CP、OM、NDF、ADF和Ash含量的预测决定系数(RSQ)为0.853~0.951,外部验证相对分析误差(RPD)为2.574~4.239,模型的预测能力良好,可用于实际检测;而EE含量的RSQ和RPD分别为0.806和2.259,定标模型只能用于样品的粗略筛选。This study aimed to construct a predictive model for the nutritional composition of fennel(Foeniculum vulgare)straw using near-infrared reflectance spectroscopy technology.Fennel straw samples(n=109)were collected in Minqin County,Gansu Province,and the absorbance values were obtained by scanning the samples with a near-infrared spectrometer.The dry matter(DM),crude protein(CP),organic matter(OM),neutral detergent fiber(NDF),acid detergent fiber(ADF),crude ether extract(EE),and crude ash(Ash)contents were determined.The modified partial least squares method was used to construct a prediction model of each nutrient component and for external verification.The coefficient of determination(RSQ)and performance to deviation(RPD)for validation of DM,CP,OM,NDF,ADF,and Ash content were 0.853~0.951 and 2.574~4.239,respectively.The model’s predictive power was good and can be used for detection.However,the RSQ and RPD of EE content were 0.806 and 2.259,respectively,suggesting that the calibration model could only be used for rough screening of samples for EE content.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15