基于多尺度特征的无参考图像质量评价算法  

No-Reference Image Quality Assessment Algorithm Based on Multi-Scale Features

在线阅读下载全文

作  者:张俊[1] 张选德 ZHANG Jun;ZHANG Xuande(School of Electronic Information and Artificial Intelligence,Shaanxi University of Science and Technology,Xi′an 710021,China)

机构地区:[1]陕西科技大学电子信息与人工智能学院,陕西西安710021

出  处:《软件工程》2025年第3期41-46,共6页Software Engineering

基  金:国家自然科学基金项目(61871260)。

摘  要:真实失真图像的无参考图像质量评价(NO Reference Image Quality Assessment,NRIQA)是图像处理领域的一个具有挑战性的问题,现有的模型难以捕获有效的质量感知特征。为了学到更准确的质量感知特征表示,提出一种基于卷积调制和自注意力机制的NRIQA网络。网络浅层使用卷积调制捕获图像的局部特征,网络深层通过双支路自注意力特征融合模块与线性注意力捕获图像的全局特征。在6个具有代表性的数据集上进行的实验结果表明,该网络表现优异。其中,在KADID-10K(Konstanz Artificially Distorted Image Quality Database 10K)和LIVEC(LIVE In the Wild Image Quality Challenge Database)数据集上的斯皮尔曼等级相关系数(Spearman Rank-order Correlation Coefficient,SRCC)分别达到了0.918和0.882,优于DEIQT(Data-Efficient Image Quality Transformer)和MUSIQ(Multi-Scale Image Quality Transformer)等先进的无参考图像质量评价算法,预测结果更准确。No-Reference Image Quality Assessment(NRIQA)of real distorted images is a challenging problem in the field of image processing,as existing models struggle to capture effective quality-aware features.To learn more accurate quality-aware feature representations,this paper proposes an NRIQA network based on convolutional modulation and a self-attention mechanism.In the shallow layers of the network,convolutional modulation is employed to capture local image features,while in the deep layers,a dual-path self-attention feature fusion module combined with linear attention is utilized to capture global image features.The results of the experiment on six representative datasets demonstrate the superior performance of the proposed network.Specifically,on the KADID-10K(Konstanz Artificially Distorted Image Quality Database 10K)and LIVEC(LIVE In the Wild Image Quality Challenge Database)datasets,the Spearman Rank-order Correlation Coefficient(SRCC)reaches 0.918 and 0.882,respectively,outperforming state-of-the-art NRIQA algorithms such as DEIQT(Data-Efficient Image Quality Transformer)and MUSIQ(Multi-Scale Image Quality Transformer),with more accurate prediction results.

关 键 词:无参考图像质量评价 质量感知特征 局部特征 全局特征 双支路自注意力 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象