检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余思燚 张晓君 YU Si-yi;ZHANG Xiao-jun(School of Philosophy,Anhui University,Hefei,Anhui230039,China)
出 处:《贵州工程应用技术学院学报》2024年第6期59-62,138,共5页Journal of Guizhou University Of Engineering Science
基 金:2024年年度国家社科基金后期项目“面向人工智能的微分动态逻辑及混成系统研究”,项目编号:24FZXB068。
摘 要:为了主要探讨“仅包含现代对当方阵Square{some}和Square{most}中的量词的”足道的广义三段论的有效性和可化归性,首先在集合论的基础上,对广义三段论进行了知识表示,接着在广义量词理论和一阶逻辑的基础上证明了MAI-3广义三段论的有效性;然后,在MAI-3的基础上,充分利用一些化归运算,进行知识推理,至少可演绎出14个有效的广义三段论。有效的广义三段论之所以具有可化归性,是因为:现代对当方阵是由一个量词及其三种否定量词组成,其中任何一个量词都可以定义其余三个量词。这一形式化研究对于人工智能中的知识表示和知识推理具有重要的理论价值和实践意义。This paper mainly discusses the validity and reducibility of non-trivial generalized syllogisms only with the quantifiers in Square{some}and Square{most}.To this end,the knowledge representation of generalized syllogisms is firstly given on the basis of set theory,and then the validity of generalized syllogism MAI-3 is proved by means of generalized quantifier theory and first-order logic.Then,making full use of some reductive operations and knowledge reasoning,there are at least 14 validity generalized syllogisms deduced from the validity of MAI-3.The reasons why valid generalized syllogisms are reducible are as follows:a modern square consists of one quantifier and its three negative quantifiers,any one of which can define the other three quantifiers.This formal study has important theoretical value and practical significance for knowledge representation and knowledge reasoning in artificial intelligence.
关 键 词:广义三段论 Square{some} Square{most} 知识表示
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49