光散射反演光学元件缺陷的级联机器学习算法  

Inversion of Light Scattering for Optical Component Defects Using a Cascaded Machine Learning Algorithm

在线阅读下载全文

作  者:蔡炜滨 吴飞斌[2] 李如意 韩军[2] Cai Weibin;Wu Feibin;Li Ruyi;Han Jun(College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,Fujian,China;Quanzhou Equipment Manufacturing Research Center,Haixi Institutes,Chinese Academy of Sciences,Quanzhou 362200,Fujian,China)

机构地区:[1]福州大学电气工程与自动化学院,福建福州350108 [2]中国科学院海西研究院泉州装备制造研究中心,福建泉州362200

出  处:《激光与光电子学进展》2024年第23期201-208,共8页Laser & Optoelectronics Progress

基  金:福建省科技计划项目(2021T3032,2021T3060,2021T3010,2022T3068,2023T3068,2023T3090,2023T3092);泉州市科技计划项目(2022C009R)。

摘  要:表面缺陷类型的判定和尺寸识别对于精密光学元件表面质量评价至关重要。针对利用角分辨散射信号反演表面缺陷结构特征参数时,传统反演算法在反演维度和尺度上存在的局限,提出一种基于决策树模型的级联机器学习反演算法。为了构建训练模型所需的数据集,基于时域有限差分(FDTD)法建立了角分辨散射系统的电磁仿真模型,通过仿真计算获得数据集。测试集数据的反演结果表明,所建立的算法分别以0.99的area under the curve(AUC)和平均0.932的R^(2)实现缺陷类型和深度的预测,拓宽了反演维度,并且能够以平均0.997的R^(2)在各缺陷深度尺度范围下实现缺陷宽度的准确预测,拓展了反演尺度。所提算法为精确定量分析光学元件表面的微小尺寸缺陷提供了新思路。Determining the types and sizes of surface defects is crucial for an evaluation of the surface quality of precision optical components.We propose a cascaded inversion algorithm based on a decision tree model to address the limitations of traditional inversion algorithms in terms of inversion dimension and scale when angle-resolved scattering signals are used to invert the structural characteristic parameters of surface defects.To construct the dataset needed to train the model,an electromagnetic simulation of the angle-resolved scattering system was established using the finite difference time domain method,and the dataset was obtained through simulation calculations.The inversion results for the test set data show that the proposed algorithm is able to predict the defect type and depth with a precision having an area under the curve of 0.99 and an average R^(2)of 0.932,expanding the inversion dimension.The algorithm also accurately predicts the width of defects at different defect depths with an average R^(2)of 0.997,increasing the scale of inversion.The proposed algorithm offers a new approach to the precise quantitative analysis of small defects on the surface of optical components.

关 键 词:测量与计量 角分辨散射 级联机器学习 时域有限差分 表面缺陷反演 

分 类 号:TH741[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象