检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程三榜 杨光永[1,2] 徐天奇 吴大飞[1,2] CHENG Sanbang;YANG Guangyong;XU Tianqi;WU Dafei(School of Electrical Information Engineering,Yunnan Minzu University,Kunming 650000,China;Yunnan Key Laboratory of Unmanned Autonomous System,Kunming 650000,China)
机构地区:[1]云南民族大学电气信息工程学院,昆明650000 [2]云南省无人自主系统重点实验室,昆明650000
出 处:《重庆理工大学学报(自然科学)》2025年第2期120-128,共9页Journal of Chongqing University of Technology:Natural Science
基 金:国家自然科学基金项目(61761049,61261022)。
摘 要:针对传统粒子群算法(PSO)存在收敛精度低以及易陷入局部最优等问题,提出一种多策略融合改进粒子群算法(MFPSO)。利用中垂线算法(midperpendicula algorithm,MA)更新粒子的位置,提升粒子的收敛速度;在最优粒子周围生成爆炸粒子挖掘最优粒子的作用,提升算法的精度;引入非线性惯性权重,增强算法的局部探索能力和全局搜索能力。选用8个基准函数对算法进行性能测试,测试结果显示:MFPSO收敛速度更快、收敛精度更高。将改进粒子群算法应用于感应加热电源恒功率控制中,在Simulink中建立模型,仿真结果表明,MFPSO优化的功率控制不仅超调量很小、调节时间短、抗干扰性强,而且系统能够很快达到稳态,验证了策略的有效性。To address the low convergence accuracy and susceptibility to local optima inherent in traditional particle swarm optimization algorithms,we propose a multi-strategy integrated improvement particle swarm optimization algorithm.First,the particle position updating method of the midpoint perpendicular algorithm is employed to enhance the convergence speed of particles.Then,explosive particles around the optimal particle are generated to enhance the accuracy of the algorithm.Next,a linear inertia weight method is introduced to augment the local exploitation capability and global exploration ability of the algorithm.Finally,a performance testing of the algorithm is conducted using eight benchmark functions.Our results indicate the MFPSO algorithm exhibits faster convergence speed and higher convergence accuracy.When the improved particle swarm optimization algorithm is introduced to constant power control of an induction heating power supply and a model is built in Simulink,results show the MFPSO optimized power control not only exhibits minimal overshoot,short settling time,and strong disturbance rejection capability,but also enables the system to quickly reach steady state,demonstrating our algorithm’s effectiveness.
分 类 号:TP273.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.31.106