基于DDPG优化方法的插电式混合动力汽车等效燃油消耗最小控制策略  

Optimization of Equivalent Fuel Consumption Minimization Strategy for Plug-in Hybrid Electric Vehicle Using DDPG

在线阅读下载全文

作  者:徐晓东 韦文祥[1] 甘紫东 XU Xiaodong;WEI Wenxiang;GAN Zidong(School of Information and Electrical Engineering,Hunan University of Science and Technology,Xiangtan 411100,China)

机构地区:[1]湖南科技大学信息与电气工程学院,湖南湘潭411100

出  处:《汽车实用技术》2025年第5期8-13,共6页Automobile Applied Technology

摘  要:为提高混动汽车的燃油经济性,以插电式混合动力汽车作为研究对象,采用深度确定性策略梯度(DDPG)算法对等效燃油消耗最小策略(ECMS)的等效因子和电池荷电状态(SOC)进行优化。将深度学习的感知能力与强化学习的决策能力相结合,解决了对混合动力汽车的能量管理优化问题。在MATLAB/Simulink中搭建整车仿真模型进行试验,结果表明,采用新欧洲驾驶循环特定工况,在满足车辆正常行驶动力需求下,基于DDPG算法优化的等效油耗极小值算法燃油消耗明显低于双深度Q网络(DDQN)和传统的ECMS,同时维持电池SOC的平衡,保证了多目标平衡性。To improve the fuel economy of hybrid vehicles,plug-in hybrid electric vehicles are chosen as research subject.The deep deterministic policy gradient(DDPG)algorithm is used to optimize the equivalence factor and battery state of charge(SOC)in equivalent fuel consumption minimization strategy(ECMS).By integrating deep learning's perception abilities with reinforcement learning's decision-making processes,the optimization control of energy management in the hybrid electric vehicle is accomplished.A complete vehicle simulation model is created in MATLAB/Simulink for experimental purposes.The outcomes demonstrate that,under condition of meeting the vehicle's normal driving power demands,fuel consumption based on DDPG algorithm optimized equivalent fuel consumption minimization algorithm is significantly lower than that of double deep Q network(DDQN)and traditional ECMS,while maintaining battery SOC balance,ensuring multi-objective optimization.

关 键 词:插电式混合动力汽车 确定性策略梯度算法 等效燃油消耗最小控制策略 等效因子 多目标平衡 

分 类 号:U461.8[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象