检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Li Ma Qi Zhong Yezi Wang Xiaoquan Yang Qian Du
机构地区:[1]School of Mechanical Engineering and Electronic Information,China University of Geosciences Wuhan 430074,P.R.China [2]Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics MoE Key Laboratory for Biomedical Photonics Huazhong University of Science and Technology Wuhan 430074,P.R.China [3]Department of Electrical and Computer Engineering Mississippi State University,Mississippi State,MS 39762,USA
出 处:《Journal of Innovative Optical Health Sciences》2025年第1期67-83,共17页创新光学健康科学杂志(英文)
基 金:supported by the STI2030-Major-Projects(No.2021ZD0200104);the National Natural Science Foundations of China under Grant 61771437.
摘 要:Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a challenge for accurate segmentation.In this paper,we propose a 3D semantic segmentation network for neuronal soma segmentation to address this issue.Using an encoding-decoding structure,we introduce a Multi-Scale feature extraction and Adaptive Weighting fusion module(MSAW)after each encoding block.The MSAW module can not only emphasize the fine structures via an upsampling strategy,but also provide pixel-wise weights to measure the importance of the multi-scale features.Additionally,a dynamic convolution instead of normal convolution is employed to better adapt the network to input data with different distributions.The proposed MSAW-based semantic segmentation network(MSAW-Net)was evaluated on three neuronal soma images from mouse brain and one neuronal soma image from macaque brain,demonstrating the efficiency of the proposed method.It achieved an F1 score of 91.8%on Fezf2-2A-CreER dataset,97.1%on LSL-H2B-GFP dataset,82.8%on Thy1-EGFP-Mline dataset,and 86.9%on macaque dataset,achieving improvements over the 3D U-Net model by 3.1%,3.3%,3.9%,and 2.3%,respectively.
关 键 词:Neuronal soma segmentation semantic segmentation network multi-scale feature extraction adaptive weighting fusion
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13