基于NRBO-SVM的短期电力负荷预测  

Short-Term Power Load Forecasting Based on NRBO-SVM

在线阅读下载全文

作  者:路林艳 徐思文 黄文涛 Lu Linyan;Xu Siwen;Huang Wentao(School of Electrical and Control Engineering,Liaoning University of Engineering and Technology,Huludao Liaoning 125000,China)

机构地区:[1]辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125000

出  处:《现代工业经济和信息化》2025年第2期246-247,250,共3页Modern Industrial Economy and Informationization

摘  要:短期电力负荷预测对于电力系统的稳定运行和经济调度至关重要,传统预测方法处理大量数据时效率较低。针对短期电力负荷易受外界扰动呈现非线性化、随机的特点,提出一种基于牛顿-拉夫逊向量机(NRBO-SVM)的短期电力负荷预测方法。支持向量机(SVM)通过核函数将历史数据映射到高维特征空间,确定牛顿-拉夫逊算法(Newton-Raphson method)合适的初始解,预计未来电荷趋势,并通过搭建仿真验证。结果表明:NRBO-SVM可较快获得准确初始解,对负荷进行快速预测,且预测精度和收敛速度显著提升。Short-term power load forecasting is crucial for the stable operation and economic dispatch of the power system,but the traditional forecasting methods are inefficient when dealing with a large amount of data.Aiming at the characteristics of short-term power load,which is susceptible to external disturbances and presents non-linearisation and randomness,a short-term power load forecasting method based on NRBO-SVM is proposed,which maps the historical data into a high-dimensional feature space through kernel function,determines the appropriate initial solution of Newton-Raphson method,anticipates the future charge trend,and verifies the results through simulation construction.The results show that NRBO-SVM can obtain the accurate initial solution faster to predict the load quickly,and the prediction accuracy and convergence speed are significantly improved.

关 键 词:短期电力负荷预测 迭代优化 非线性化 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象