检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁焕雯 常盼 DING Huanwen;CHANG Pan(Zhengzhou Professional Technical Institute of Electronic&Information,Zhengzhou 451450,China)
出 处:《移动信息》2025年第2期100-102,共3页Mobile Information
摘 要:在图像识别、自然语言处理等领域,深度学习的应用日益广泛,推动着智能化系统的革新与进步.文中剖析了深度学习的核心机制与应用场景,重点分析了卷积神经网络(CNN)和残差网络(ResNet)在图像分类中的卓越表现.最后,构建了一种基于深度学习的图像识别模型,并通过详尽的数据分析展示了概模型的性能.此外,还探讨了计算机智能信息处理技术在各大领域中的实际应用,展现了深度学习在信息处理领域的应用潜力.In the fields of image recognition and natural language processing,the application of deep learning is increasingly widespread,promoting the innovation and progress of intelligent systems.This paper analyzes the core mechanism and application scenarios of deep learning,focusing on the excellent performance of convolutional neural networks(CNN)and residual networks(ResNet)in image classification.Finally,an image recognition model based on deep learning is constructed,and the performance of the approximate model is demonstrated through detailed data analytics.In addition,the practical application of computer intelligent information processing technology in various fields is also discussed,showing the application potential of deep learning in the field of information processing.
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43