检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯锋 FENG Feng(Guangdong Baiyun University,Guangzhou 510450,China)
机构地区:[1]广东白云学院,广州510450
出 处:《移动信息》2025年第2期241-243,246,共4页Mobile Information
摘 要:在电子产品逐渐精密化与复杂化的背景下,传统的质量检测方法也慢慢暴露出固有的缺陷.基于计算机视觉技术的质量检测方法以其高度自动化和非接触式的优势,成为行业创新的关键驱动力.文中探索了计算机视觉技术在电子产品质量检测中的应用,如图像采集与处理、深度学习模型的构建和优化.研究发现,计算机视觉技术不仅提高了检测效率,还显著提升了缺陷识别的准确性,具有广阔的应用前景.In the context of the gradual sophistication and complexity of electronic products,traditional quality inspection methods have gradually exposed inherent defects.Quality inspection methods based on computer vision technology have become a key driving force for industry innovation due to their highly automated and non-contact advantages.This paper explores the application of computer vision technology in electronic product quality inspection,such as image acquisition and processing,deep learning model construction and optimization.The study found that computer vision technology not only improves the detection efficiency,but also significantly enhances the accuracy of defect recognition,which has broad application prospects.
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7