人工智能在肺血栓栓塞症和肺动脉高压诊疗中的研究进展  

Artificial intelligence applied to the diagnosis and treatment of pulmonary thromboembolism and pulmonary hypertension

在线阅读下载全文

作  者:李子涵 丁媛 李小丫 师晓雨 邝土光[2] 杨媛华[2] 龚娟妮[2] Li Zihan;Ding Yuan;Li Xiaoya;Shi Xiaoyu;Kuang Tuguang;Yang Yuanhua;Gong Juanni(Capital Medical University,Beijing 100069,China;Department of Respiratory and Critical Care Medicine,Beijing Chaoyang Hospital,Capital Medical University,Beijing Institute of Respiratory Medicine,Beijing 100020,China)

机构地区:[1]首都医科大学,北京100069 [2]首都医科大学附属北京朝阳医院呼吸与危重症医学科,北京市呼吸疾病研究所,北京100020

出  处:《国际呼吸杂志》2025年第1期70-75,共6页International Journal of Respiration

基  金:国家自然科学基金(62206187)。

摘  要:肺血栓栓塞症(PTE)和肺动脉高压(PH)是严重的肺血管疾病,发病率高,前者起病迅速,严重者预后差;后者缺乏特异的症状,易造成漏诊和误诊。人工智能、深度学习技术基于其高效的大数据处理能力,在PTE和PH诊断治疗中有较大潜力。从医学图像(如CT肺动脉造影、超声心动图、心电图)中识别PTE和PH并进行危险分层成为近年来研究热点,同时也在疾病的个性化治疗、新药研发中发挥作用。本文就人工智能在PTE和PH的诊断治疗、风险评估和疾病预测等方面的应用进行阐述,以提高临床医生、人工智能专家对该领域的认识。Pulmonary thromboembolism(PTE)and pulmonary hypertension(PH)are serious pulmonary vascular diseases with high incidence rates.PTE has a rapid onset and a poor prognosis for severe cases,while PH lacks specific symptoms,leading to misdiagnosis and missed diagnosis.Based on their efficient big data processing capabilities,artificial intelligence(AI)and deep learning technology have great potential in the diagnosis and treatment of PTE and PH.Identifying PTE and PH from medical images(such as CT pulmonary angiography,echocardiography,and electrocardiogram)and performing risk stratification have become a research hotspot in recent years,while also playing a role in individualized treatment and new drug development for these diseases.Therefore,this article discussed the application of AI in the diagnosis and treatment,risk assessment,and disease prediction of PTE and PH,thus improving the understanding of clinicians and AI experts in this field.

关 键 词:肺血栓栓塞症 高血压 肺性 人工智能 深度学习 风险评估 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] R563.5[自动化与计算机技术—控制科学与工程] R544.1[医药卫生—呼吸系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象