基于灰色关联分析的收割机喂入量检测方法研究  

Detection Method of Harvester Feeding Amount Based on Grey Correlation Analysis

在线阅读下载全文

作  者:李川 高原源 王爱臣 Li Chuan;Gao Yuanyuan;Wang Aichen(College of Agricultural Engineering,Jiangsu University,Zhenjiang 212013,China;Key Laboratory of Ministry of Education of Modern Agricultural Equipment and Technology,Jiangsu University,Zhenjiang 212013,China)

机构地区:[1]江苏大学农业工程学院,江苏镇江212013 [2]江苏大学现代农业装备与技术教育部重点实验室,江苏镇江212013

出  处:《农机化研究》2025年第6期163-169,共7页Journal of Agricultural Mechanization Research

基  金:江苏省现代农机装备与技术示范推广项目(NJ2021-64);江苏省自然科学基金项目(BK20210776)。

摘  要:为了提高联合收割机喂入量检测的准确性,提出了基于灰色关联权重的联合收割机喂入量检测方法。以水稻作为试验对象,中联重科PL60型联合收割机为试验平台,进行了喂入量检测田间试验。通过灰色关联分析确定了割台主动轴扭矩和发动机从动轴扭矩与喂入量关联度较大,分别建立了割台主动轴扭矩和发动机从动轴扭矩与喂入量回归模型,根据灰色关联权重对两个回归模型进行加权融合,并通过田间试验对融合后的喂入量检测模型进行验证。结果表明:检测模型的平均绝对误差为0.09 kg/s,平均相对误差为6.28%,能够实现喂入量的准确检测。In order to improve the stability of the detection model of harvester feeding amount,a method of constructing the detection model of harvester feeding amount based on grey correlation weight was proposed.Taking rice as the test object and Zoomlion PL60 harvester as the test platform,the field experiment of feeding amount detection was carried out.Through grey correlation analysis,it was determined that the correlation between the active torque of the header and the torque of the engine driven shaft and the feeding amount was relatively large.The regression models of the active torque of the header and the torque of the engine driven shaft and the feeding amount were established respectively.The two regression models were weighted and fused according to the grey correlation weight.The fusion detection model was verified by field experiments.The results showed that the average absolute error of the detection model was 0.09 kg/s,and the average relative error was 6.28%.It can realize the accurate detection of the feeding amount.

关 键 词:联合收割机 喂入量检测 灰色关联分析 

分 类 号:S225.3[农业科学—农业机械化工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象