检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶珑[1,2] 郭燕飞 TAO Long;GUO Yanfei(School of Electronic Information Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;Shanxi Key Laboratory of Advanced Control and Equipment Intelligence,Taiyuan 030024,China)
机构地区:[1]太原科技大学电子信息工程学院,山西太原030024 [2]先进控制与装备智能化山西省重点实验室,山西太原030024
出 处:《工矿自动化》2025年第2期131-137,共7页Journal Of Mine Automation
基 金:国家自然科学基金项目(62441313);山西省重点研发计划项目(202003D111008);太原科技大学科研启动基金项目(20212038)。
摘 要:煤矿通风机振动信号是一种非平稳多分量信号。传统的非平稳信号特征信号提取方法存在自适应性差、对通风机早期故障的微弱特征辨识能力有限等问题,基于广义变分模式分解的特征提取方法的信号处理速度难以满足通风机振动信号特征快速提取的要求。针对上述问题,提出了一种基于改进变分模式分解的煤矿通风机振动信号特征快速提取方法。在广义变分模式分解算法的基础上,采用乘子交替方向法迭代求解,将约束优化问题转换为无约束优化问题。应用改进变分模式分解算法对信号进行等效分解,得到匹配目标信号特征的等效滤波器,通过内积变换原理快速提取通风机振动信号特征分量。仿真和实验结果表明,改进变分模式分解算法对不同强度的特征分量提取效果均较好,准确性和抗噪性良好,处理通风机实测振动信号的耗时为0.008165 s,与广义变分模式分解算法相比,特征提取速度大幅提升。The vibration signal of coal mine ventilator is a non-stationary multicomponent signal.Traditional methods for feature extraction of non-stationary signals suffer from poor adaptability and limited ability to identify weak characteristics of early faults in the ventilators.Additionally,the signal processing speed of feature extraction methods based on generalized Variational Mode Decomposition(VMD)is unable to meet the requirements of rapid feature extraction of ventilator vibration signals.To address these issues,a rapid feature extraction method for coal mine ventilator vibration signals based on improved VMD is proposed.On the basis of the generalized VMD algorithm,the multiplier alternating direction method was used for iterative solving,converting the constrained optimization problem into an unconstrained optimization problem.The improved VMD algorithm was applied to perform equivalent decomposition of the signals,obtaining an equivalent filter that matched the target signal features.The feature components of the ventilator vibration signals were quickly extracted based on the inner product transform principle.Simulation and experimental results showed that the improved VMD algorithm performed well in extracting feature components of different intensities,with good accuracy and noise resistance.The processing time for the measured ventilator vibration signals was 0.008165 seconds.The feature extraction speed was significantly improved compared to the generalized VMD algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3