检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:晁孟华 CHAO Menghua(Guangzhou College of Commerce,Guangzhou 511363,China)
机构地区:[1]广州商学院,广东广州511363
出 处:《乡村科技》2025年第3期150-154,共5页Rural Science and Technology
基 金:广东省民办教育协会2024年度民办高校科研课题(GMG2024017);广东省哲学社会科学规划2024共建项目(GD24XGL032);横向项目(2024HXXM182)。
摘 要:全球碳排放量日益增加,空气污染加重,渐渐影响到人类生活环境。越来越严峻的环境问题受到了人们普遍的重视,“低碳革命”得到公众认可。在日常生活中,生鲜产品的冷链配送存在高能耗且具有碳排放量高的特点,对生态环境的影响较为突出,如何降低生鲜产品冷链配送碳排放成为一个亟待解决的实际问题。基于碳排放低碳视角,研究在考虑客户满意度和模糊时间窗两个约束条件下,运用改进遗传算法,通过降低碳排放量的方式探究冷链物流的配送路径优化问题。The global carbon emissions are increasing daily,leading to severe air pollution and gradually affecting the human living environment.The increasingly serious environmental problems have attracted high attention from people all over the world,and the"low-carbon revolution"has become a global trend.The cold chain delivery not only consumes a large amount of energy but also emits a high amount of carbon,which has a more prominent impact on the ecological environment.Therefore,how to reduce carbon emissions in fresh cold chain delivery has become an urgent problem to be solved.This article,based on a low-carbon perspective,considers customer satisfaction and fuzzy time windows as constraints and uses an improved genetic algorithm to explore the ptimizing delivery routes in cold chain logistics through reducing carbon emissions.
分 类 号:S23-9[农业科学—农业机械化工程] U116.2[农业科学—农业工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62