机构地区:[1]福建医科大学附属第一医院泌尿外科,福建福州350005 [2]福建医科大学附属第一医院滨海院区泌尿外科国家区域医疗中心,福建福州350212
出 处:《浙江大学学报(医学版)》2025年第1期99-107,I0032-I0034,共12页Journal of Zhejiang University(Medical Sciences)
摘 要:目的:构建输尿管软镜碎石术(FURL)后并发尿源性脓毒症的反向传播神经网络预测模型。方法:纳入428例接受FURL的肾结石患者,根据术后是否并发尿源性脓毒症分为脓毒症组(42例)和对照组(386例)。采用logistic回归分析确定FURL后并发尿源性脓毒症的影响因素及其交互作用。同时建立logistic回归模型和神经网络模型进行预测,通过受试者工作特征曲线评估两种模型的预测效能。结果:单因素分析显示,结石手术史、性别、尿培养阳性、结石直径、糖尿病、手术时间、白细胞、血小板、C反应蛋白(CRP)及肝素结合蛋白(HBP)水平与FURL后并发尿源性脓毒症显著相关(均P<0.05)。多因素分析表明,尿培养阳性、CRP及HBP水平是FURL后并发尿源性脓毒症的独立危险因素(均P<0.05)。交互作用分析显示,CRP与HBP对FURL后并发尿源性脓毒症的影响在相加模型(RERI=8.453,95%CI:2.645~16.282;AP=0.696,95%CI:0.131~1.273;S=3.369,95%CI:1.176~7.632)和相乘模型(OR=1.754,95%CI:1.218~3.650)中存在交互作用;CRP与尿培养对FURL后并发尿源性脓毒症的影响在相乘模型(OR=2.449,95%CI:1.525~3.825)中存在交互作用。预测模型比较显示,反向传播神经网络模型较logistic回归模型具有更优的预测效能。结论:CRP和HBP水平是FURL后并发尿源性脓毒症的独立危险因素,基于CRP、HBP等因素构建的反向传播神经网络模型较logistic回归模型具有更高的预测准确性。Objective:To analyze the association of serum heparin-binding protein(HBP)and C-reactive protein(CRP)levels with urosepsis following flexible ureteroscopic lithotripsy(FURL)and to construct a back propagation neural network prediction model.Methods:A total of 428 patients with kidney stones who underwent FURL were enrolled.Patients were divided into sepsis group(n=42)and control group(n=386)according to whether post-operative urosepsis developed.Logistic regression analysis was used to determine the risk factors of post-FURL urosepsis and their interactions.A logistic regression model and a back propagation neural network model were developed for predicting post-FURL urosepsis following FURL,and their predictive performance was evaluated using receiver operating characteristic curves.Results:Univariate analysis showed that stone surgery history,gender,positive urine culture,stone diameter,diabetes,operation time,white blood cell(WBC),platelet,CRP,and HBP levels were significantly associated with post-FURL urosepsis(all P<0.05).Multivariate analysis identified positive urine culture,CRP,and HBP levels as independent risk factors for post-FURL urosepsis(all P<0.05).Interaction analysis revealed that CRP and HBP showed both additive(RERI=8.453,95%CI:2.645-16.282;AP=0.696,95%CI:0.131-1.273;S=3.369,95%CI:1.176-7.632)and multiplicative(OR=1.754,95%CI:1.218-3.650)interactions,while CRP and urine culture demonstrated multiplicative interaction(OR=2.449,95%CI:1.525-3.825).The back propagation neural network model demonstrated superior predictive performance compared to the logistic regression model.Conclusions:CRP and HBP levels are independent risk factors for post-FURL urosepsis.The back propagation neural network model based on CRP and HBP exhibits higher predictive accuracy than the logistic regression model,which may provide a reliable risk assessment tool for early discrimination and intervention of post-FURL urosepsis.
关 键 词:肝素结合蛋白 C反应蛋白 输尿管软镜碎石术 尿源性脓毒症 预测 LOGISTIC回归模型 反向传播神经网络模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...