检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Liangkai Liu Yanzhi Wang Weisong Shi
机构地区:[1]Department of Computer and Information Science,University of Delaware,Newark,DE 19713,USA [2]Department of Electrical&Computer Engineering,Northeastern University,Boston,MA 02115,USA
出 处:《Tsinghua Science and Technology》2025年第1期87-99,共13页清华大学学报自然科学版(英文版)
摘 要:Predictability is an essential challenge for autonomous vehicles(AVs)’safety.Deep neural networks have been widely deployed in the AV’s perception pipeline.However,it is still an open question on how to guarantee the perception predictability for AV because there are millions of deep neural networks(DNNs)model combinations and system configurations when deploying DNNs in AVs.This paper proposes configurable predictability testbed(CPT),a configurable testbed for quantifying the predictability in AV’s perception pipeline.CPT provides flexible configurations of the perception pipeline on data,DNN models,fusion policy,scheduling policies,and predictability metrics.On top of CPT,the researchers can profile and optimize the predictability issue caused by different application and system configurations.CPT has been open-sourced at:https://github.com/Torreskai0722/CPT.
关 键 词:PREDICTABILITY deep neural network autonomous driving
分 类 号:TN9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43