Equivalent norms, Hardy-Littlewood-type theorems,and their applications  

在线阅读下载全文

作  者:Shaolin Chen Hidetaka Hamada 

机构地区:[1]College of Mathematics and Statistics,Hengyang Normal University,Hengyang 421002,China [2]Faculty of Science and Engineering,Kyushu Sangyo University,Fukuoka 813-8503,Japan

出  处:《Science China Mathematics》2025年第3期533-558,共26页中国科学(数学英文版)

基  金:supported by National Natural Science Foundation of China (Grant No. 12071116);the Hunan Provincial Natural Science Foundation of China (Grant No. 2022JJ10001);the Key Projects of Hunan Provincial Department of Education (Grant No. 21A0429);the Double First-Class University Project of Hunan Province (Grant No. Xiangjiaotong [2018]469);the Science and Technology Plan Project of Hunan Province (Grant No. 2016TP1020);the Discipline Special Research Projects of Hengyang Normal University (Grant No. XKZX21002);supported by the Japan Society for the Promotion of Science KAKENHI (Grant No. JP22K03363)。

摘  要:The primary goal of this paper is to develop methods for investigating equivalent norms and HardyLittlewood-type theorems on Lipschitz-type spaces of analytic and complex-valued harmonic functions. First,we provide characterizations of equivalent norms on these spaces. Furthermore, we establish Hardy-Littlewoodtype theorems for complex-valued harmonic functions. These results improve and extend the main findings of Dyakonov(1997) and Dyakonov(2005). Additionally, we apply the derived equivalent norms and HardyLittlewood-type theorems to the study of composition operators between Lipschitz-type spaces.

关 键 词:Lipschitz space equivalent norm harmonic function composition operator 

分 类 号:O174.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象