基于VMD煤矿电力电缆故障定位技术研究  

Research on fault location technology for coal mine power cable based on VMD

在线阅读下载全文

作  者:李志福 Li Zhifu(Fushun CCTEG Testing Center Co.,Ltd.,Fushun 113122,China;CCTEG Shenyang Research Institute,Fushun 113122,China;State Key Laboratory of Coal Mine Safety Technology,Fushun 113122,China)

机构地区:[1]抚顺中煤科工检测中心有限公司,辽宁抚顺113122 [2]中煤科工集团沈阳研究院有限公司,辽宁抚顺113122 [3]煤矿安全技术国家重点实验室,辽宁抚顺113122

出  处:《煤炭科技》2025年第1期115-118,124,共5页Coal Science & Technology Magazine

基  金:国家重点研发计划项目(2022YFF0605300);国家发改委实验室建设项目(发改投资[2019]704号)。

摘  要:煤矿井下电力电缆故障的发生严重影响煤矿的正常运行和人身安全,迅速发现并定位煤矿井下电缆故障点有利于恢复煤矿安全生产。提出将VMD算法应用于煤矿电力电缆故障诊断的定位技术,通过分析电力电缆故障的类型及行波定位方法,研究EMD算法与VMD算法的原理、特性,并分别用上述2种算法分解模拟故障行波信号,对比结果得出,采用VMD算法分解的故障行波信号在保留原始信号特征方面表现更为优越。此外,VMD算法能够更有效地提取故障行波信号中的信息,并且在面对复杂环境和噪声干扰时表现更为稳健,为煤矿井下电缆故障定位技术提供参考。The occurrence of power cable faults underground in coal mines seriously affects the normal operation and personal safety of coal mines.Quickly identifying and locating cable fault points underground in coal mines is beneficial for restoring coal mine safety production.The application of VMD algorithm in the localization technology of coal mine power cable fault diagnosis was proposed,by analyzing the types of power cable faults and the traveling wave localization method,the principles and characteristics of EMD algorithm and VMD algorithm were studied.The above two algorithms were respectively used to decompose and simulate fault traveling wave signals.The comparison results show that the fault traveling wave signals decomposed by VMD algorithm perform better in retaining the original signal characteristics.In addition,the VMD algorithm can more effectively extract information from fault traveling wave signals and perform more robustly in the face of complex environments and noise interference,providing reference for underground cable fault localization technology in coal mines.

关 键 词:电缆故障定位 原始信号 故障行波 EMD算法 VMD算法 

分 类 号:TD611[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象