Attribute grouping-based naive Bayesian classifier  

在线阅读下载全文

作  者:Yulin HE Guiliang OU Philippe FOURNIER-VIGER Joshua Zhexue HUANG 

机构地区:[1]Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen 518107,China [2]College of Computer Science&Software Engineering,Shenzhen University,Shenzhen 518060,China

出  处:《Science China(Information Sciences)》2025年第3期121-145,共25页中国科学(信息科学)(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.61972261);Natural Science Foundation of Guangdong Province(Grant No.2314050006683);Key Basic Research Foundation of Shenzhen(Grant Nos.JCYJ2022081810,0205012);Basic Research Foundation of Shenzhen(Grant No.JCYJ20210324093609026)。

摘  要:The naive Bayesian classifier(NBC)is a supervised machine learning algorithm having a simple model structure and good theoretical interpretability.However,the generalization performance of NBC is limited to a large extent by the assumption of attribute independence.To address this issue,this paper proposes a novel attribute grouping-based NBC(AG-NBC),which is a variant of the classical NBC trained with different attribute groups.AG-NBC first applies a novel effective objective function to automatically identify optimal dependent attribute groups(DAGs).Condition attributes in the same DAG are strongly dependent on the class attribute,whereas attributes in different DAGs are independent of one another.Then,for each DAG,a random vector functional link network with a SoftMax layer is trained to output posterior probabilities in the form of joint probability density estimation.The NBC is trained using the grouping attributes that correspond to the original condition attributes.Extensive experiments were conducted to validate the rationality,feasibility,and effectiveness of AG-NBC.Our findings showed that the attribute groups chosen for NBC can accurately represent attribute dependencies and reduce overlaps between different posterior probability densities.In addition,the comparative results with NBC,flexible NBC(FNBC),tree augmented Bayes network(TAN),gain ratio-based attribute weighted naive Bayes(GRAWNB),averaged one-dependence estimators(AODE),weighted AODE(WAODE),independent component analysis-based NBC(ICA-NBC),hidden naive Bayesian(HNB)classifier,and correlation-based feature weighting filter for naive Bayes(CFW)show that AG-NBC obtains statistically better testing accuracies,higher area under the receiver operating characteristic curves(AUCs),and fewer probability mean square errors(PMSEs)than other Bayesian classifiers.The experimental results demonstrate that AG-NBC is a valid and efficient approach for alleviating the attribute independence assumption when building NBCs.

关 键 词:naive Bayesian classifier attribute independence assumption attribute grouping dependent attribute group pos-teriorprobability class-conditional probability 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象