检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yunshan ZHONG Mingbao LIN Jingjing XIE Yuxin ZHANG Fei CHAO Rongrong JI
机构地区:[1]Institute of Artificial Intelligence,Xiamen University,Xiamen 361005,China [2]Key Laboratory of Multimedia Trusted Perception and Efficient Computing,Ministry of Education of China,Xiamen University,Xiamen 361005,China [3]Department of Artificial Intelligence,School of Informatics,Xiamen University,Xiamen 361005,China [4]Tencent Youtu Lab,Shanghai 200233,China [5]Peng Cheng Laboratory,Shenzhen 518000,China
出 处:《Science China(Information Sciences)》2025年第3期159-176,共18页中国科学(信息科学)(英文版)
基 金:supported by National Key R&D Program of China(Grant No.2022ZD0118202);National Science Fund for Distinguished Young Scholars(Grant No.62025603);National Natural Science Foundation of China(Grant Nos.U21B2037,U22B2051,62176222,62176223,62176226,62072386,62072387,62072389,62002305,62272401);Natural Science Foundation of Fujian Province of China(Grant Nos.2021J01002,2022J06001)。
摘 要:This paper introduces distribution-flexible subset quantization(DFSQ),a post-training quantization method for super-resolution networks.Our motivation for developing DFSQ is based on the distinctive activation distributions of current super-resolution models,which exhibit significant variance across samples and channels.To address this issue,DFSQ conducts channel-wise normalization of the activations and applies distribution-flexible subset quantization(SQ),wherein the quantization points are selected from a universal set consisting of multi-word additive log-scale values.To expedite the selection of quantization points in SQ,we propose a fast quantization points selection strategy that uses K-means clustering to select the quantization points closest to the centroids.Compared to the common iterative exhaustive search algorithm,our strategy avoids the enumeration of all possible combinations in the universal set,reducing the time complexity from exponential to linear.Consequently,the constraint of time costs on the size of the universal set is greatly relaxed.Extensive evaluations of various super-resolution models show that DFSQ effectively improves performance even without fine-tuning.For example,for 4-bit EDSR×2 on the Urban benchmark,DFSQ obtains 0.242 dB PSNR gains.
关 键 词:SUPER-RESOLUTION post-training quantization distribution-fexible subset quantization neural network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151