基于非经典感受野亚区的轮廓检测方法  

A contour detection method based on non-classical receptive field subfield

在线阅读下载全文

作  者:章敬艳 范影乐[1] 房涛 Zhang Jingyan;Fan Yingle;Fang Tao(School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China)

机构地区:[1]杭州电子科技大学自动化学院,杭州310018

出  处:《航天医学与医学工程》2025年第1期65-68,74,共5页Space Medicine & Medical Engineering

摘  要:目的基于初级视觉皮层非经典感受野亚区外周抑制特性机理,提出一种新型轮廓检测方法。方法模拟初级视皮层经典感受野受到外部刺激的响应特性,构建多方位二维Gabor滤波器模型,实现初级轮廓的提取。之后基于初级皮层非经典感受野亚区的结构特性,提出非经典感受野亚区侧抑制模型,实现纹理抑制。对于视觉信息传递的前馈机制,采用二维Gaussian函数模拟神经节细胞对信息的处理,信息跨层级传递,提高响应速率。模拟人眼捕捉全局信息的特性,进行轮廓修正,最终得到轮廓图。结果针对RUG40图像库的测试,与其他轮廓检测算法进行定性和定量分析比较;BSDS500中任意200张图像的平均准确度(AP)达0.703。结论新型轮廓检测方法能更有效突显主体轮廓并且抑制纹理背景。Objective This paper proposes a novel contour detection method inspired by the surround inhibition mechanism of the primary visual cortex.Methods The method involves simulating the response characteristics of the classical receptive field in the primary visual cortex to external stimuli and constructing a multi-directional two-dimensional Gabor filter model for extracting primary contours.A non-classical receptive subfield surround suppression model is proposed based on the structural characteristics of the non-classical receptive subfield for texture suppression.Additionally,a two-dimensional Gaussian function is used to simulate information processing by ganglion cells,and information is transmitted across levels to improve the response rate.Finally,the characteristics of capturing global information by the human eye are simulated to correct the contours and obtain the final contour map.Results Qualitative and quantitative analysis compared with other existing contour detection algorithms;The average accuracy(AP)of any 200 images in the BSDS500 reached 0.703.Conclusion the results show that the proposed algorithm can more effectively highlight the contour of the subject and suppress the texture background.

关 键 词:轮廓检测 非经典感受野亚区 视通路 周围抑制 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象