西北干旱地区气象干旱风险预测模型研究  

Research on meteorological drought risk prediction model in the arid region of Northwest China

在线阅读下载全文

作  者:王文玉 李涛 高泽海 卢颖杰 WANG Wenyu;LI Tao;GAO Zehai;LU Yingjie(Faculty of Water Resources and Hydropower,Xi'an University of Technology,710048,Xi'an,China;Beijing Engineering Corporation Limited,100024,Beijing,China)

机构地区:[1]西安理工大学水利水电学院,西安710048 [2]中国电建集团北京勘测设计研究院有限公司,北京100024

出  处:《中国水土保持科学》2025年第1期117-130,共14页Science of Soil and Water Conservation

基  金:陕西省自然科学基础研究计划“新型高效节水灌溉喷头”(2021JM-337)。

摘  要:中国西北干旱地区由于严重的降水不足与水分流失等问题,导致干旱事件频发。为探究适用于西北干旱地区气象干旱预测的神经网络模型,以西北干旱地区12个气象站点降水量数据为基础,采用标准化降水指数(SPI)作为指标,根据输入变量的不同分别基于反向传播神经网络(BPNN)、极限学习机(ELM)、长短期记忆网络(LSTM)建立9组模型进行气象干旱预测,并通过GLDAS数据集验证模型稳定性。LSTM的预测精度高于BPNN与ELM,且在输入变量较少的情况下仍能保持较高的预测精度。其中精度最高模型M7的决定系数R^(2)=0.965、均方根误差RMSE=0.175;LSTM在不同典型年的预测中表现良好,R^(2)均> 0.8,RMSE均<0.132,且枯水年与特枯水年的预测精度略高于丰水年与平水年的预测精度。LSTM在中国西北干旱地区气象干旱预测方面有良好的适用性。[Background]Drought is a temporary and recurring meteorological event that has the most serious impact on human society.The arid region of Northwest China is located in the hinterland of the Eurasian continent.Due to severe insufficient precipitation and high evaporation,the arid region of Northwest China often suffers from the impact of drought,seriously affecting local agricultural production and life,and causing serious social and economic impacts.Establishing a drought prediction model applicable to the arid region of Northwest China will effectively reduce the impact of varying degrees of drought on these areas.[Methods]In order to explore the neural network model suitable for meteorological drought prediction in the arid region of Northwest China,based on the precipitation data of twelve meteorological stations in the arid region of Northwest China from 1987 to 2016,the standardized precipitation index(SPI)was used as an indicator.According to the different input variables,nine groups of models were established based on the back-propagation neural network(BPNN),the extreme learning machine(ELM),and the long short-term memory network(LSTM)to predict the meteorological drought.And the stability of the model through the GLDAS dataset was verified.[Results]1)The prediction accuracy of ELM is slightly improved compared to BPNN,and the training time is shorter.However,ELM and BPNN have low prediction accuracy in some regions,low reliability of the model,and poor applicability.And the two models are difficult to maintain good prediction accuracy in the case of a single input variable.2)The analysis of the results of the meteorological drought prediction model show that the prediction accuracy of LSTM is higher than that of BPNN and ELM.The coefficient of determination(R^(2))of the highest accuracy model M7 is 0.965,2 and the root mean square error(RMSE)is 0.175.The R^(2) in typical years are all greater than 0.8,and the RMSE is less than 0.132.3)The analysis of the prediction results of typical years shows that LS

关 键 词:西北干旱地区 气象干旱预测 神经网络模型 反向传播神经网络 极限学习机 长短期记忆网络 

分 类 号:S157[农业科学—土壤学] S166[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象