检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘佳 鲁维 崔晨曦 李豪 胡立知 胡云锋[1,2] LIU Jia;LU Wei;CUI Chenxi;LI Hao;HU Lizhi;HU Yunfeng(State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing,100101,P.R.China;College of Resources and Environment,University of Chinese Academy of Sciences,Beijing,100048,P.R.China;College of Geographic Sciences,Inner Mongolia Normal University,Hohhot,010010,P.R.China;College of Civil Engineering and Architecture,China Three Gorges University,Yichang,443002,P.R.China)
机构地区:[1]中国科学院地理科学与资源研究所,北京100101 [2]中国科学院大学,北京101408 [3]内蒙古师范大学,呼和浩特010018 [4]三峡大学,湖北宜昌443002
出 处:《中国科学数据(中英文网络版)》2025年第1期140-156,共17页China Scientific Data
基 金:国家重点研发计划(2021YFD1300501);国家自然科学基金(42371304);资源与环境信息系统国家实验室自主创新重点项目(KPI011)。
摘 要:总初级生产力(Gross Primary Productivity,GPP)是生态系统生产力的重要指标,反映光合作用下有机物的生成量。GPP水平的下降通常预示着生态退化。为了实现对GPP的高精度监测和量化,本研究基于Landsat-Sentinel协调数据(HLS数据)、ERA5-Land气象再分析数据和全球草地通量站点数据,开发了呼伦贝尔草原30米空间分辨率、5天时间分辨率的GPP数据集。首先,应用Savitzky-Golay滤波法对归一化植被指数(NDVI)进行时序重建,从而获得连续、无缝的植被动态数据。随后,通过对比4个GPP反演模型(MOD17、CFIX、CILUE和EC-LUE),评估各模型在呼伦贝尔草原生态系统模拟中的表现,从而确定精度表现最优的模型。结果表明:基于EC-LUE的改进模型在草地GPP反演中效果突出,模型模拟数据与通量站观测数据的相关系数达0.80。本研究生成了2023年3月至10月呼伦贝尔草原高时空分辨率GPP数据集。本数据集将为草原生态系统的动态监测、碳循环研究以及草地资源管理和畜牧业应用等提供数据支持。Gross Primary Productivity(GPP)is a key indicator of ecosystem productivity,reflecting the amount of organic matter generated through photosynthesis.A decline in GPP often indicates ecological degradation.To enable precise monitoring and quantification of GPP,this study developed a dataset of 5-day GPP with a resolution of 30 meter,based on Landsat-Sentinel harmonized data(HLS),ERA5-Land meteorological reanalysis data,and global grassland flux site data.First,the Savitzky-Golay filter was applied to reconstruct the time series of the Normalized Difference Vegetation Index(NDVI),resulting in continuous and seamless vegetation dynamic data.Subsequently,four GPP inversion models(MOD17,CFIX,CILUE,and EC-LUE)were compared to assess their performance in simulating GPP in the Hulunbuir grassland ecosystem.The results showed that the improved EC-LUE model outperformed others,achieving a correlation coefficient of 0.80 between model simulations and flux station observations.Based on this model,a GPP dataset with a high spatiotemporal resolution was generated for the Hulunbuir grasslands from March to October 2023.This dataset provides valuable support for dynamic monitoring of grassland ecosystems,carbon cycle research,grassland resource management,and livestock applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.183.63