检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:史永 SHI Yong(Shaanxi Shaanxi Coal Tongchuan Mining Chenjiashan Coal Mine,Tongchuan 727102)
机构地区:[1]陕西陕煤铜川矿业陈家山煤矿,铜川727102
出 处:《现代制造技术与装备》2025年第2期203-205,共3页Modern Manufacturing Technology and Equipment
摘 要:为提升长距离煤矿皮带运输机多级协同控速性能,提出基于深度学习的控速方法研究。首先检测煤流量,确保精准感知运输负载;其次识别长距离煤矿皮带运输机的实时运行状态,为控速提供数据基础;最后利用深度学习,设计多级协同控速算法,实现多级皮带运输机的协同控速目标。实验结果显示,随着皮带运输机运行时间的增加,该方法应用后的带速波动率逐渐降低,展现出优异的控速性能,使皮带机运行更加平稳,有效提升了煤矿运输的安全性和效率。In order to improve the multi-level collaborative speed control performance of long-distance coal mine belt conveyors,a speed control method based on deep learning is proposed.Firstly,detect the coal flow rate to ensure accurate perception of transportation load;Secondly,identify the real-time operating status of long-distance coal mine belt conveyors to provide a data foundation for speed control;Finally,using deep learning,a multi-level collaborative speed control algorithm is designed to achieve the collaborative speed control goal of multi-level belt conveyors.The experimental results show that as the running time of the belt conveyor increases,the fluctuation rate of the belt speed gradually decreases after the application of this method,demonstrating excellent speed control performance,making the belt conveyor run more smoothly,and effectively improving the safety and efficiency of coal mine transportation.
关 键 词:深度学习 长距离 煤矿 皮带运输机 多级 协同 控速
分 类 号:TD528.1[矿业工程—矿山机电] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62